

Workshop on

INTRODUCTION TO MENU-DRIVEN FISH STOCK ASSESSMENT AND MANAGEMENT DECISION MAKING (KOBE I+II) SOFTWARE

Conducted by Dr. Tom Nishida Stock Assessment Software Developing Team, Japan

10.00 AM - 12.00 Noon June 12th Monday 2023

Jointly organised by National Aquatic Resources Research and Development Agency (NARA) & Sri Lanka Association for Fisheries and Aquatic Resources (SLAFAR)

More info https://slafar.lk/

3 species working groups (WG) established and WG members

(1)Small tuna(2)Sardine(3)Kawakawa

(1) Small tuna WG

NARA scientists		Species	Stock	Data		Note	
Name	Pictures	Specialty		structure	Catch	CPUE	
				(assumption)			
Kasun		Small tuna	Will work on	Sri Lankan	SLNS	Sampling data,	 Kasun is responsible
Randika	Lawrence .	(Matara U)	one most	water	IOIC	database & others	for 3 small tuna
(leader)	1 Alexandre	MS	important species				species (Kawakawa,
			(2024)				Bullet and frigate
							tuna) in NARA.
							 TropfishR
Sujeewa		Demersal					 No data available for
Hemanthi		Shrimp					demersal species.
		Survey					
Thejani		Shark					 Thejani is responsible
Balawardhana		Biology					for Blue and Silky
		(Matara U)					shark in NARA

(2) Sardine WG

NARA scientists		Species	Stock Data		Note			
Name	Pictures	Specialty		structure (assumption)	Catch	CPUE		
Kishara Bandaranayake (leader)		Small Pelagic (Reproductive Biology) (Univ. of Sri Jayewardenepura)	Will work on one most important species (2024) (Need to decide species in this	Sri Lankan water	SLNS	Sampling data, database & others	•	Kishara is responsible for 4 Sardine species and spotted sardine in NARA. Data are available for Spotted sardine and 2 other species.
L.D. Gayathry		Small pelagic (Badulla U) Nuwara Eliya	time)				•	LBSPA method (Length-Based Spawning Potential Ratio)
Thanushan (Kalpitiya) Thanusanth Santhalingam		Shrimp Trawl survey Demersal/Lagoon (Eastern U) (Kelaniya U)					•	STOX (Norway)

(3) Indian mackerel WG

NARA scientists		Species	Stock	Data		Note	
Name	Pictures	Specialty		structure	Catch	CPUE	
				(assumption)			
Udari		Yellowfin	Indian	Sri Lankan	SLNS	Sampling data,	 Ayesha is responsible
Ayeshya		tuna	mackerel	water		database & others	for Indian mackerel in
(leader)	(Carl)						NARA.
Acini		Plankton					 Achini has Anchovy
Fernando	100 million	Anchovy					data (only 2 years),
	Man	(Kelaniya U)					thus cannot conduct
							SA.

Menu driven software "CPUE standardization", "Stock & Risk assessments" and "Management decision making (Kobe I+II)"

Stock assessments for ALL

Tom Nishida (PhD)

Representative

STOCK ASSESSMENT Software developing team

Welcome aboard

June 12 (Mon) NARA, Sri Lanka

10-12 AM

- Part 1 Presentation & discussion (All)
- Part 2 Future collaborative works (<u>small group</u> for those interested in)
- → may be extended if more time needed

Captain FV Tom Nishida

Important Abbreviation

- SA : <u>Stock A</u>ssessment
- RFMO : <u>Regional Fisheries Management Organizations</u> (example \rightarrow IOTC)
- F : Fishing mortality
- SSB (SB) : Spawning Stock Biomass
- TB : Total Biomass
- PM : Production Model

Self-Introduction

Stock assessments (practical) Fish GIS (<u>http://www.esl.co.jp/Sympo/</u>) Hokkaido University (BS) University of Washington (BS+MS) Tokyo University (PhD)

Work (38 years) FAO (BOBP+IPTP)(Sri Lanka) (1985-1990) (NARA→ Back to home now !!)

National Research Institute of Far Seas Fisheries (Japan) (IOTC + 4 RFMO)

(Extra work) Stock assessment software developing team (Japan) (assist 104 users in 24 countries) Before starting presentation.....

We would like to have a minute of silent prayer to <u>Dr Sivasubramanian</u>.

Dr Siva passed away last October. Dr Siva & I worked BOBP together (NARA). He was a great scientist and leader for NARA, Sri Lanka and World !

Contents

<mark>(1) Outline</mark>

(2) Menu-driven software

- CPUE standardization
- Stock and Risk assessment
 - Overview
 - Production model (ASPIC and JABBA)
 - Age structured production model (ASPM)
- Management decision making tool (Kobe I+II)
- (3) Summary

Informal seminar

Please ask any questions, make comments & discussion anytime...

usuau chuttoretock com . 21/02077/

Outline (Menu-driven software) OBJECTIVES

- To develop menu-driven software for ALL
 - especially for non-SA professionals & for those not good at programming.
- Total 8 = $\lceil CPUE$ standardization (1) $\rfloor + \lceil SA$ models (5) \rfloor
 - + ^rmanagement decision making tools (Kobe I+II) (2)
- Easy: <u>Anyone</u> can do (short time) by <u>menu</u> (NO programming)

POLICY I

We <u>don't recommend</u> to use our menu-driven software?? Why???

• The most appropriate way \rightarrow develop <u>own</u> programs (R, C++).

→ Users can learn how application works, what Input/Output means

- Past Capacity Buildings (15 years)
 - → most users using our software find it **difficult** to do so.
 - ➔ OK to use

POLICY II

- Users **need** understand mechanism & Input/Output.
- In the **past** Capacity Building, we fully explained these points to users.
 - \rightarrow we will continue to do SO...
- IMPORTANT POINT

We protect users against Auto-operating syndrome.

→we don't want users

to be easy-going & lazy persons.

POLICY III : SIMPLE METHODS

SIMPLE 🗲 QUICK & DIRTY

Professor Steve Mathews (University of Washington)

Even simple/approximate method is OK

≈ Theoretically best methods

This philosophy is applied for our menu-driven software

Comparisons: "Theoretical Best" vs "Quick & Dirty(simple)" approaches						
	[A]	[B]				
Approach	Theoretically good	Quick & Dirty (simpler)				
Users	Limited (highly skillful) experts	Non expert (more people)				
Method	Theoretically best but highly complicated	Simpler				
Data requirements	Many	Minimum				
Time	Highly time consuming	less				
Results	Probably best, but not necessarily so, due to too many data by complicated methods	Appriximate thus not best, but close to [A] or <u>better than [A]</u> sometimes				

some		[A]	[B]	
some	Approach	Theoretically good	Quick & Dirty (simpler)	
example	Results	Best	Approximate thus not best, but close to [A] sometimes	
	Example (some parameter estimation in SA)	$P_{y} = \begin{cases} \varphi e^{\eta_{y}} & \text{for } y = 1 \\ \left(P_{y-1} + \frac{r}{(m-1)} P_{y-1}(1 - P_{y-1}^{m-1}) & \text{for } P_{y-1} \ge P_{\lim} & \& y = 2, 3,, n \\ - \frac{\sum_{f} C_{f,y-1}}{K} \right) e^{\eta_{y}} \\ \left(P_{y-1} + \frac{r}{(m-1)} P_{y-1}(1) & \text{for } P_{y-1} < P_{\lim} & \& y = 2, 3,, n \\ - P_{y-1}^{m-1} \right) \frac{P_{y-1}}{P_{\lim}} - \frac{\sum_{f} C_{f,y-1}}{K} e^{\eta_{y}} \end{cases}$	Py ≈Φ2	
	results	both produce almost iden	tical estimates.	

Based on this philosophy

8 menu driven software

6 developed and 2 under development

Updated

Туреѕ		Level	Name	Icon to start	Features
CPUE standardization		Basic to Intermediate	(1) GLM based CPUE Standardization	CPUE standardization	Basic CPUE Standardization
Stock assessment (SA)	Production model (PM)		(2) ASPIC (A Stock-Production model Incorporating Covariates)	ASPIC batch job	Standard PM incorporating observation (OBS) errors
	Age structured (integrated) model		(3) JABBA (Just Another Bayesian Biomass Assessment) (4)		Theoretically best PM incorporating both OBS and process errors In-between PM &
		– Advanced	ASPM (Age Structured Production Model) (5) SCAA	(for both ASPM and SCAA)	age-structured model (selectivity: fixed) Catch-At-Age based
			(Statistical- Catch-At-Age) (6)		age-structured model Catch-At-Size
			SCAS (Statistical- Catch-At-Size)	🛀 SCAS	based age-structured model
Management decision tools		Basic to Intermediate	(7) <u>Kobe I</u> : Kobe plot and <u>Kobe II</u> : Strategy matrix (risk assessment)	Kobe plot I_II	<u>Kobe I</u> : Standard stock status trajectory plot <u>Kobe II</u> : Evaluation of the optimum catch level (TAC)
		Intermediate	(8) <u>Kobe II</u> for (2) ASPIC	Kobe II Risk matrix (for ASPIC) (ver.2	<u>Kobe II:</u> Special version suitable for (2) ASPIC

INPUT	Types CPUE standardization		Name	Input information					
DATA				Catch	CPUE	Biology	SA results (B/Bmsy and F/Fmsy) Projection	Prior (Bayesian Approach)	
			(1) GLM based CPUE Standardization						
	Stock assessment (SA)	Production nt model (PM)	(2) ASPIC (A Stock-Production model Incorporating Covariates)						
			(3) JABBA (Just Another Bayesian Biomass Assessment)						
		Age structured (integrated) model	(4) ASPM (Age Structured Production Model)						
			(5) SCAA (Statistical- Catch-At-Age)						
			(6) SCAS (Statistical- Catch-At-Size)						
	Management decision tools		(7) Kobe I and II						
			(8) Kobe II for (2) ASPIC						

Complicated methods are <u>not necessarily</u> good methods nor provide good results

same for the simple methods

So we don't have any good methods.. what is the <u>best solution</u>? (important)

UTILIZATION

- All software : <u>FREE</u> of charge for anyone to utilize.
- If you want to use the software, please contact us.
- We will provide the <u>on-site free training</u>. (funded by <u>ODA</u> and others)
- We will release software and manual <u>after</u> we make sure that users understand the software (theory & input/output) and can handle software <u>properly</u>.

Our responsibility

USERS: 104 USERS (24 COUNTRIES)

Sri Lanka (not yet), but will start...

Algeria, Argentina, Brunei Darussalam^{*}, Cambodia^{*}, China, Indonesia^{*}, India, Iran, Japan^{*}, Rep. Korea, Kenya, Malaysia^{*}, Mexico, Myanmar^{*}, Oman, Peru, Philippines^{*}, Spain, Thailand^{*}, Trinidad and Tobago, USA, Viet Nam^{*}, Taiwan and Turkey.

(*) Southeast Asian Fisheries Development Center (SEAFDEC) member countries

Menu driven software

will be fully explained

Our ultimate goal

Stock assessments (SA) <u>for ALL</u> No more

struggling with SA
only for SA experts (5~10%)
for a happy & better life for ALL

Contents

(1) Outline

(2) Menu-driven software

- CPUE standardization
- Stock and Risk assessment
 - Overview
 - Production model (ASPIC and JABBA)
 - Age structured production model (ASPM)
- Management decision making tool (Kobe I+II)

(3) Summary

CPUE standardization by year

To be used as one of most important inputs for stock assessment as abundance index

(year based)

Menu-driven CPUE standardization software

Policy → <u>for non technical users</u> → Simple <mark>(quick & dirty)</mark>

GLM → standard. No complicated ones (VAST, regression tree, NN etc.)
 Covariates (factors affecting nominal CPUE)
 → Minimum (year, season, area) (3)

➔If users want to use more complicated methods and more covariates, use R, SAS etc..

Why we need CPUE standardization?

• Nominal (raw) CPUE

 \rightarrow Bias \rightarrow not real abundance index \rightarrow not good for SA

Major bias by
 → Y(Year), S(Season) & A(Area)

<u>Other bias by \rightarrow target, ENV, gear, vessel, skipper etc.</u>

→ Could be explained by YSA because biases are reflected by time & area

Thus, 3 Covariates (=factors) (Year, Season & Area) → OK
 if you want to use more covariates → use R, SAS etc.

Model: GLM (Generalized Linear Model) standard approach

GLM is a <u>flexible</u> generalization linear regression Error distribution → Normal (Bell shape) distribution

Simple linear regression (high school math textbook) is the <u>simplest</u> GLM

Simple way to explain CPUE standardization by GLM (1 covariate → year)

Simple linear regression

You can calculate standardized CPUE

Simple way to explain GLM (2 covariates: year & area) → Still you can calculate, but bit complicated

No simple way to explain GLM (3 or more covariates)

Can not draw images ...

More complicated to compute standardized CPUE

So need <u>**R, SAS**</u> etc., But we use <u>**menu-driven GLM**</u> software (actually we use R behind)

(Simple) Input data : Example Year (1986-2006)(21), Season(4), Area(7) and Nominal CPUE

VD	0	2102	KAW CPUE			
ĨŇ	Q	area	(KG/HAUL)			
2006	1	6	26.88			
2006	1	6	0.00			
2006	1	6	0.00			
2006	2	6	163.35			
2006	2	6	314.64			
2006	2	6	37.69			
2006	3	6	237.87			
2006	3	6	429.18			
2006	3	6	18.69			
2006	4	6	29.62			
2007	1	6	0.00			
2007	1	6	0.00			

3 steps to complete

CPUE standardization

×

st	wind	→
L	WIIIU	

Check

- (1)Sample size
- (2)0 catch rate

Selection

3 Model

Covariates (4)

Sample	e size	(n=)—					(2	0 (zero) CPUE (catch) rate (red bar)= 27%
								\$ frequency distribution of nominal CPUE
		area 1	area	2	area 3	area 4	area 5	Frequency distribution of nominal CPUE
199	5	4	12		12	11	12	requerty assistation of normal or of
199	6	1	12		10	12	3	0
199	7	1	12		10	12	3	[
199	8	12	12		12	12		N -
199	9	5	12		12	12	10	9
200	0	3	12		12	11	10	- 20
200	1	3	12		12	11	4	12
200	2	8	12		12	12	4	
200	3	12	12		12	12	4	₽ - 1
200	4	12	12		12	12	4	
200	5	12	12		12	12	9	
200	6	3	12		12	12	12	
200	7	12	12		12	12	12	0 200 400 600 800 1000 1200
200	8	12	12		12	12	12	CPUE
200	9	12	12		12	12	12 (3	Select model
201	0	12	12		12	12	12	
201	1	12	12		12	12	12	• 0 (zero) CPUE (catch) rate < around 30%
201	2	12	12		12	12	12	○ Delta type 2 steps log-normal model:
201	3	12	12		10	12	12	0 (zero) CPUE (catch) rate > around 30%
201	4	12	12		10	12	12 (Z) Select covariates (factors)
201	5	12	12		10	12	12	
								M T (fear)
	Q1	Q 2	Q 3	Q 4	1			S (Season: Month, Quarter etc.)
1995	18	19	19	19	1			🗌 A (sub-Area)
1996	16	15	16	15	1			□ Y * A
1997	16	15	16	15	1			□ Y * S
1998	18	18	18	18	1			□ S * A
<	1	1			-1		> [×]	□ Y * S * A
							_	

Information on 0(Zero) Catch

1

Cancel

1 ^{s⁻}	^t wi	ndow	→
_			_

<mark>check</mark> ① Sample size

why ? If sample size too small, results will be no reliable. 1

mple	size	(n=)						Ľ	
			1				1	<u>^</u>	% frequency distribution of nominal C
		area 1	area	2	area 3	area 4	area 5	-	Frequency distribution of nominal CPUE
1995		4	12		12	11	12	-	
1996		1	12		10	12	3	-	8 1
1997		1	12		10	12	3		h
1998		12	12		12	12		-	- 34
1999		5	12		12	12	10	-	ŵ o _
2000		3	12		12	11	10	_	2 (
2001		3	12		12	11	4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2002		8	12		12	12	4		ě.
2003		12	12		12	12	4		9 - 9
2004		12	12		12	12	4		
2005		12	12		12	12	9		
2006		3	12		12	12	12		• J
2007		12	12		12	12	12		0 200 400 600 800 1000 12
2008		12	12		12	12	12		CPUE
2009		12	12		12	12	12	$\widehat{\mathbf{a}}$	Select model
2010		12	12		12	12	12	ৃ	
2011		12	12		12	12	12		● Log normal GLM: ● 0 (zero) CPUE (catch) rate < around 30
2012		12	12		12	12	12		 Delta type 2 stens log-normal model:
2013		12	12		10	12	12		0 (zero) CPUE (catch) rate > around 30
2014		12	12		10	12	12	Δ	
2015		12	12		10	12	12	J	Select covariates (factors)
									⊠Y(Year)
					7				🗌 S (Season: Month, Quarter etc.)
	Q1	Q 2	Q 3	Q4	-				🗆 A (sub-Area)
1995	18	19	19	19	4				□ Y * A
1996	16	15	16	15	4				$\Box Y * S$
1997	16	15	16	15	4				
1998	18	18	18	18				~	

	Information on 0(Zero) Catch					
(1)	Sample siz	e (n=)—				(2)	0 (zero) CPUE (catch) rate <mark>(red bar)</mark> = 27 %
1 st uindou -						^	% frequency distribution of nominal CPUE
		area 1	area 2	area 3	area 4	area 5	Frequency distribution of nominal CPUE
	1995	4	12	12	11	12	
	1996	1	12	10	12	3	8 1
<mark>chock</mark>	1997	1	12	10	12	3	
CHECK	1998	12	12	12	12	. 10	- 3 ²
$\widehat{\mathbf{O}}$ $\widehat{\mathbf{O}}$ catch rate	2000	3	12	12	12	10	- 32 (%)
	2000	3	12	12	11	4	
	2002	8	12	12	12	4	
	2003	12	12	12	12	4	Ë Ҿ
$M/h_{\rm V}$ 2	2004	12	12	12	12	4	
vvily :	2005	12	12	12	12	9	
If there are too many O	2006	3	12	12	12	12	
If there are too many o	2007	12	12	12	12	12	0 200 400 600 800 1000 1200
(zero) catch	2008	12	12	12	12	12	CPUE
	2009	12	12	12	12	12 (3)	Select model
	2010	12	12	12	12	12	Solution ⊂ Log normal GLM ¹
	2011	12	12	12	12	12	0 (zero) CPUE (catch) rate < around 30%
results (hias)	2012	12	12	12	12	12	O Delta type 2 steps log-normal model:
	2013	12	12	10	12		O (zero) CPUE (catch) rate > around 30%
	2014	12	12	10	12	$+\frac{12}{12}(4)$	Select covariates (factors)
		12	12	10	12	12	🗹 Y (Year)
Need to use theoretically							🗆 S (Season: Month, Quarter etc.)
Need to use theoretically	Q	1 Q2	Q3 Q	4			🗆 A (sub-Area)
appropriate GLM model	1995 1	8 19	19 19	9			□ Y * A
	1996 1	6 15	16 1	5			□ Y * S
	1997 1	8 18	18 19	8			□ S * A
	1550 1	- 10		<u> </u>		~	Y * S * A

What is the theoretically appropriate GLM model

If 0 catch rate < 30% → GLM (OK)

But if 0 catch rate > 30 %

0 (zero) inflated Delta type 2 step log-normal GLM (2 step GLM)

(1) Estimate 0 catch rate (logistic regression)

(2) Standardized CPUE for non-0 catch

→ Standardized CPUE=(1)*(2)

(Prof. Shono)

3 steps to complete

CPUE standardization

×

2 Outputs will be provided

(1) Numerical results (excel file) \rightarrow Users can do further analyses

	Observed	Estimated	Lower boundary of	Upper boundary of		
	(nominal) CPUE	(standardized) CPUE	95% CI (2.5%)	95% CI (97.5%)		
1996	96.64	73.82	46.41	116.05		
1997	87.21	67.21	42.13	105.86		
1998	46.38	22.69	10.34	45.49		
1999	49.75	38.05	24.28	58.45		
2000	65.33	72.53	47.55	109.56		
2001	60.73	68.77	45.01	103.98		
2002	66.14	77.39	50.83	116.76		
2003	77.64	90.49	59.67	136.17		
2004	62.06	55.99	36.39	85.04		
2005	20.66	18.84	11.32	29.98		
2006	18.74	22.88	14.05	35.97		
2007	10.60	14.02	8.07	22.84		
2008	16.48	19.44	11.72	30.87		
2009	13.54	17.75	10.59	28.37		
2010	34.11	24.09	14.86	37.76		
2011	37.47	36.87	23.49	56.71		
2012	28.94	34.38	21.80	53.01		
2013	29.49	24.67	15.25	38.63		
2014	30.92	26.29	16.35	41.03		
2015	22.04	21.07	12.83	33.30		

2 Outputs will be provided

(2) Summary of results (word file) → Your report is ready !

- ANOVA
 → to check if model and COV are significant.
- Graphs → Estimated standardized CPUE by year
 overlaid with 95% CI + Nominal CPUE
- Diagnosis (residual analyses) (model evaluation)
 - → Histogram (Residuals) to check errors are normal distribution
 - \rightarrow QQ plots to check the model is OK

ANOVA to check if model (GLM) is OK & Covariates affect nominal CPUE (5%)

ANOVA	ANOVA (Analysis <u>Of</u> Variance) Table for log normal GLM to test statistical significances											
	Adjusted R2 = 0.60←											
Factors↩	DF↓	Type III SS↓	F value<⊐	Pr(>F)↩								
	(Degrees of Freedom)←	(Sum of Squares)←										
Model⊲	1074	636.674	8.53	0.00								
YR←⊐	204	89.01	6.38	0<								
Q↩⊐	3∉	3.424	1.64	0.18								
area↩	6∻	429.09€	102.49	0←								
YR*Q⊲	60 <	64.594	1.54	0.01								
YR*area⊲	÷	÷	÷	~								
Q*area↩	184	50.55∢	4.02	0€								

- Model is OK (significant to Covariates \rightarrow effective model) < 5%
- Covariates are OK (significant to nominal CPUE → affected) <5%
 <u>except Q (> 5%) → non significant to nominal CPUE → not affected</u>

Model suitability **Error** distributions (Bell chape) Log normal GLM Model OK

If NG, you need to try 2 steps GLM or other models

QQ (quantile-quantile) plot

Another method to evaluate Model if errors (observation) follow normal distribution

> Straight line (perfect normality)

This case (GLM) is OK

Contents

- Outline
- Introduction to menu driven software
 - (1) CPUE standardization
 - (2) Stock & Risk assessment
 - <mark>Overview</mark>
 - Production model (ASPIC and JABBA)
 - Age Structured Production Model (ASPM)
 - (3) Management decision tool
 - Kobe I+II
- Summary

Overview: Stock & Risk assessments

Let's start from stock assessment overview

•Quiz How many stock assessment models ?

How many SA models ? More than 50 (IOTC, 2015) (a list and not classified)

Method	Data Requi	rements	Reference	Management Advice	Pros	Cons	
	Biology	Fishery	Points				
PSA	Qualitative	Qualitative	No	Qualitative	Easy to use if LH parameters available	Difficult to relate to current abundances and fishing mortality.	
Demographic Models/Elasticity Analysis	Age & growth, Fecundity, Natural Mortality	Several fishery characteristics	No	Mostly qualitative (change of gear) and F	Easy to use if LH Parameters available. Can provide guidance on gear usage/ selectivity	Must assume that LH parameters are correct, but uncertainties can be introduced. Difficult to relate to current abundances and fishing mortality.	
Catch free LH Based	M, growth curve parameters, and Age at full Maturity or Max Age	Selectivity	Yes (F _{MSY})	F _{MSY}	Easy to get LH parameters if available. Zhou et. al. (2011) provides equations that are relevant to species. Could run a meta-analysis and run as well using a Bayesian Hierarchical Model Approach. Provides a Target F.	Guidelines provided for Fishing Mortality, but no specifics on current status. No idea what current Biomass and F are. However some guidelines could be provided based on theoretical carrying capacity, current depletion levels, and whether current take are meeting or exceeding targets.	
Catch free CPUE Based	M, growth curve parameters, and Age at full Maturity or Max Age & recruitment	Selectivity and CPUE Series	Yes (F _{MSY} & B _{MSY})	F _{MSY} & B _{MSY}	Easy to parameterize with LH data. Estimate recruitment, F and selectivity to tune to the CPUE series. Provides target F, Yield levels and where we are with regards to these rates. Provides target B as well and where we are with regards to that.	LH based assumptions could be misleading. CPUE series may not be representative of abundance series if from a limited fleet and area. Catch at size should be estimated from the viewpoint of the operational patterns	
Catch Based SRA	r & K	Catch series	Yes (F _{MSY} & B _{MSY})	F _{MSY} & B _{MSY}	Set of data that currently exist (but may not be too good). Tried and tested approach in ICES, Walters, etc. Easy to run, provides Yield targets and FMSY & BMSY	Uncertainty in catch series can give misleading results. Based on assumptions of depletion range in current years that may give misleading results. May not be very accurate in terms of FMSY and BMSY	
Surplus Production (Bayesian or Otherwise)	r & K	Catch series & CPUE series	Yes (F _{MSY} & B _{MSY})	F _{MSY} & B _{MSY}	Traditional approaches. Used extensively in literature. Provides yield targets and FMSY and BMSY	Length of time-series and uncertainty in catch series and CPUE series can bias results. Models may have problems converging to a solution if there is no contrasting information.	
Integrated assessments	Recruitment, M by age, growth paramters, maturation schedule, fecundity, recruitment	Catch series, Length based samples, CPUE data (and or have tagging data), fishery selectivity	Yes (F _{MSY} & B _{MSY})	F _{MSY} & B _{MSY}	Most robust approach. Incorporates all information in a dynamic model. Provides most representative yield targets and FMSY and BMSY	Highly data dependent. Models can have problems converging. Learning curve steep. 55	

50 approaches \rightarrow 3 major categories(Nishida, 2015)

				Important for management	
Type No.	Туре	Information	Data period	Reference point (MSY, Fmsy, SSBmsy etc.)	Models (examples)
1	Demography (Qualitative)	Parameters			 ERS PSA Productivity-Susceptibility Analysis
2	Standard	Real data	Short term (Snap shot)	Partially available, but only for the short term (temporary)	 ELEFAN FiSTAT Y/R
3	stock assessments (Quantitative)		Long term historical fisheries data (preferably 10 years or longer)	Available (<u>more objective</u> due to a longer- term data)	 (1) SRA(CMSY) (Catch only method) (2) Production model (ASPIC etc.) (3) Age (size) structured models (VPA, SCAA, ASPM etc.) (4) Integrated models (SS3, MULTIFAN-CL etc.)

Type 3 (important) : Summary

				Data and parameters required								
Models		Example	Stock structure	Global catch	Abundance indices (CPUE or fisheries in depend indices such as acoustic/areal survey data)	size/age	M (natural mortlity)	LW relation + growth eq	Maturity + fecundity	Space and movement		
Data limit approach		SRA(CMSY) (Catch only)										
Pro	duction model	ASPIC										Driors
		JABBA									╉	r K
	(without abundance indices)	VPA										
Age/size	(with abundance indices)	ADAPT-VPA										
structure model	Simpler integrated model (I)	ASPM SCAA										
	Integrated model (II)	CASAL and SS3								(option) 52		

Based on the summary

We considered which models should be used for menu-driven software

Basic philosophy Quick & dirty=Simpler (easier) model but we still need effective stock assessments (for non-SA professionals)

So we selected

Simple : Production model → ASPIC Intermediate: Age structured model → ASPM

Please note that ASPM and SCAA are similar ASPM fixes selectivity and SCAA estimates selectivity

We suggest to use ASPM

as estimation of selectivity (SCAA) is sometimes difficult (especially when sample size of length are small)

We further review Production models in details ...

Evolution of Production Model

		Authors	Features				
			Equilibrium Condition (EC) (death=increase) (never happen)	Error type		_ ·	
Evolu	ution Type			Observation (data) error	Process (model) error	Bayesian (better) Approach	Comments
		Shaeffer(1954),					Classical
old	Original PM	PT(1969) & Fox	YES				(Not recommended
		(1970)					to use due to EC)
	ASPIC (Ver5)	Prager (2004)					Basic, standard & common (RFMOs &
	ASPIC (ver7.5)	Prager (2017)	NO				fishing countries)
ne	JABBA	Winker (2018)					Best but high
	(Just Another						standard (slowly
	Bayesian Biomass						expanding)
	Assessment)						Recommended

So we decided to develop the additional menu driven software : JABBA

JABBA: Just Another Bayesian Biomass Assessment

Henning Winker^{a,b,*}, Felipe Carvalho^c, Maia Kapur^{c,d}

^a Department of Agriculture, Forestry and Fisheries, Private Bag X2, Vlaeberg, 8018, South Africa

^b Centre for Statistics in Ecology, Environment and Conservation (SEEC), Department of Statistical Sciences, University of Cape Town, South Africa

^c NOAA Pacific Islands Fisheries Science Center, 1845 Wasp Boulevard, Building 176, Honolulu, HI, 96818, United States

^d Joint Institute for Marine and Atmospheric Research, University of Hawaii, 1845 Wasp Boulevard, Building 176, Honolulu, HI, 96818, United States

JABBA (Complicated)

<u>State space(many sub-models incorporated)</u> Process & OBS error, Bayesian, MCMC and Diagnostics

But basic idea is the production model (catch and CPUE)(simple)

JABBA has 2 opposite aspects → Complicated but simple (quick & dirty) (new type!! for us → 2 opposite philosophy)

We recently started development. It will take 1 year... Hope we can show you <u>next year</u>!

Contents

- Outline
- Introduction to menu driven software
 - (1) CPUE standardization
 - (2) Stock & Risk assessment
 - <mark>Overview</mark>
 - Production model (ASPIC and JABBA)
 - Age Structured Production Model (ASPM)
 - (3) Management decision tool
 - Kobe I+II
- Summary

Overview: Risk assessment

Why we need to do Risk assessment? Stock assessments are not enough?

Stock assessments are enough to the some extent

We know the stock status

We can set up TAC (e.g. MSY)

Maybe that is enough and OK??

Not OK...thus we need Risk assessment..

We know the current stock status \rightarrow green (happy) zone \odot

So, we are OK, finish our work and we can relax ...

But if the current catch level were continued... then we may end up the **RED ZONE in 10 years !**

How do we know the future stock status?

For example stock assessments \rightarrow current stock status (red zone) what happens the stock status

Simply if catch level is higher more RISK to violate MSY levels

And vice versa

lower catch
less risk to violate MSY level

We should certainly avoid HIGH RISK
→ We need to select OPTIMUM CATCH level
to maintain MSY level in the future (Pr>50%)

For this purpose, we need to do Risk assessment, i.e.,

What are Kobe II : Strategy matrix & diagram?

Matrix or Diagram showing Probability of risk (%) violating MSY levels (Biomass & F) by different catch level in the future (10 years)

Will show real ones ..

Kobe II strategy matrix (TB+F) (3 & 10 years later) (IOTC)

to decide optimum catch level (TAC) criteria 50% < Pr (risk) (10 years later) a little less than MSY 21,000 ton

		Probabilities	(%) violati	ng TBmsy	and Fms	/in 3 and	10 years.					
					T		Color	legend	1			
			Risk Ievels Low ris			risk	Mec low	lium risk	Med high	lium risk	High risk	
		Probably		0 -	20%	20 -	50%	50 - 80%		80 - 100		
Catch level ->		60%	70%	80%	90%	100%	110%	115%	120%	130%	140%	
							Current catch		MSY level			
							(*)					
		10 catch scenarios (tons)	11,231	13,103	14,975	16,847	18,719	20,591	21,500	22,463	24,335	26,207
3	ſ	TB2019 < TBmsy	1	2	3	5	8	12	14	16	23	30
years later	1	F2019 > FMSY	0	0	0	0	3	11	20	29	63	97
10		TB2026 < TBmsy	0	0	0	1	8	34	52	70	96	100
years later		F2026 > FMSY	0	0	0	0	5	31	53	76	100	100
		(*)The curr	ent catch	levelis th	e average	catch in	3 recent v	/ears(2014	4-2016).			

Kobe II strategy diagram (more general) (by TB and F) (10 years)

to decide optimum catch level (TAC) criteria 50% < Pr (risk) (10 years later) a little less than MSY 21,000 ton

Contents

(1) Outline

- (2) Menu-driven software
 - CPUE standardization
 - Stock and Risk assessment
 - Overview
 - Production model (ASPIC and JABBA)
 - Age structured production model (ASPM)
 - Management decision making tool (Kobe I+II)

(3) Summary

Evolution of Production Model

Evolution					Feature	25		_		
				Equilibrium	Erroi	rtype				
		Туре	Authors	Condition (EC) (death=increase) (never happen)	Observation (data) error	Process (model) error	Bayesian (better) Approach	Comments		
		Shaeffer(1954						Classical		
O	old Original PM		PT(1969) & Fox (1970)	YES				(Not recommended to use due to EC)		
		ASPIC (Ver5)	Prager (2004)					Basic, standard & common (RFMOs &		
		ASPIC (ver7.5)	Prager (2017)	NO				fishing countries)		
		JABBA						Best but high		
ne	new	(Just Another	Winker (2018)					standard (slowly		
		вауеsian Biomass Assessment)						expanding) Recommended		

ASPIC A Stock Production Model Incorporating Covariates

Outline

INPUT Catch & CPUE

OUTPUT (Estimation) MSY, F, r (intrinsic pop growth rate), K (Carrying capacity), q (catchability) B1/K (depletion) Population size

how to estimate 4 parameters ?

Original ASPIC: A Single run/time

Microsoft Windows [Version 6.1.7601] Copyright (c) 2009 Microsoft Corporation. All rights reserved.
C:¥Users¥TN4>cd C:¥TN¥Neritic(SEAFDEC)¥マニュアル¥4 software (109MB)¥(2) ASPIC (original soft) (v 5.05) Prager (2004) (1.3MB)
C:¥TN¥Neritic(SEAFDEC)¥マニュアル¥4 software (109MB)¥(2) ASPIC (original soft) (v 5.05) Prager (2004) (1.3MB)>dir ドライブ C のボリューム ラベルは Windows7_OS です ボリューム シリアル番号は 5CE1-2062 です
C:¥TN¥Neritic(SEAFDEC)¥マニュアル¥4 software (109MB)¥(2) ASPIC (original soft) (v 5.05) Prager (2004) (1.3MB) のディレクトリ
2016/04/18 23:34 〈DIR〉 . 2016/04/18 23:34 〈DIR〉 . 2005/05/17 05:50 939,220 aspic.exe 2011/06/23 14:56 240,313 aspic5_05(manual).pdf 2004/08/18 08:31 132,431 ASPIC5_05.pdf 2006/11/02 21:54 1,659 Command Prompt.Ink 2014/01/24 10:23 2,656 s14.inp 2013/05/28 16:56 4,963 test.inp 6 個のファイル 1,321,242 バイト 2 個のディレクトリ 101,927,071,744 バイトの空き領域

If you have several scenarios on K, B1/K, q and MSY for example 3 each

- 4³⁼256
- With 2 models (Schaefer and FOX)
- Then Total 512 combinations
- Too much to do by hand (one by one) (Pencil and Paper method)

you will be tired
you need strong muscle!

But danger is the local minimum

 False convergences (answers) (incorrect estimated parameters)

What is the local minimum? We select optimum parameters when SSE (errors) is minimum. You might find the incorrect SSE (→parameters) if your search range is <u>limited.</u>

To protect damages of your muscle and to avoid local minimum we develop special software

ASPIC Grid search software (menu driven) This automatically run combination of plausible parameters ranges

No need pencil and paper method Software works for you (you can rest) No worry about the <u>local</u> minimum

Starting ASPIC Batch job

You will see the 1st window (menu)

> then import -/ input data.

Setting up the grid search (range & step)

X

input file	Input file C:\TN\(OI	(*.inp) RG-12) (3) 海外	└協力(42G)\韓国]\/パワーポイント\A	SPIC\run1.inp		Option of batch job				
								Start	Pause	Termination	
Selection of PM	Models	aefer 🔽	FOX Com	bination: 2	-					Clear	
		mini(<=)	Start	max(<=)	step	Combinatio	on				
R1/K	 B1∕K	0.7 🜻	0.9 🌩	1.0 🜩	0.1 🖨	4					
	q1	4.0d-6		3.0d-5	1.0d-5	4					
0	q2 q3						-				
Ч	q4					0					
NASV	q5					0	~				
	set up	mini(1,000to	ns) Start	max(1,000tons	s) step						
	MSY	120	200	280	200l	4	-				
K	K	200	000	040	2001] 3					
		total	number of co	ombinations (batch job)	384					
								Processing time:	00h00m	00/00	
								[Current no. of the bat	ch job being proce:	ssed]/[total number of the	
								batch jobj		89	

Now software working for you 348 combo.

lodels				•			Cle
✓ Scha	aefer 🗹 i	FOX Com	pination: 2				R:2 It: 322 B1/K:0.0743 K:3.81E+05 MSY:2.14E+05 SSE:5.9033556E+
	mini(<=)	Start	max(<=)	step	Combination	n	R:4 It: 273 B1/K:0.3502 K:2.90E+05 MSY:2.24E+05 SSE:5.5004623E+
1/K	0.8 🐥	0.9 🜲	1.0 🚔	0.1 🜲	3		R:5 It: 280 B1/K:0.3502 K:2.90E+05 MSY:2.24E+05 SSE:5.5004623E+(R:6 It: 254 B1/K:0.3502 K:2.90E+05 MSY:2.24E+05 SSE:5.5004623E+(
	I						R:7 It: 276 B1/K:0.3502 K:2.90E+05 MSY:2.24E+05 SSE:5.5004623E+
q 1	4.99d-5		9.99d-5	4.99d-5	2	^	R:9 It: 273 B1/K:0.3502 K:2.90E+05 MS1.2.24E+05 SSE:5.5004625E+
q2					0		Elapsed CPU ticks: 109
a3							Elapsed time: 0 hours, 0 minutes, 0 seconds.
40							WARNING: At least one parameter estimate is at or near a constrain
q4					0		Solution may be trivialexamine output file run1.fit carefully.
q5					0		ASPIC Version 5 10
						Ť	
et up	mini(1,000tons) Start	max(1,000tons) step			TITLE: (1) KAW-P
MSY	120	200	280	50	4		R:0 It: 495 B1/K:0.0743 K:3.80E+05 MSY:2.14E+05 SSE:5.8951831E+1
К	290	550	840	200	3		R:1 It: 294 B1/K:0.0743 K:3.79E+05 MSY:2.14E+05 SSE:5.8949824E+0
							R:2 It: 531 B1/K:0.0743 K:3.79E+05 MSY:2.14E+05 SSE:5.8948370E+1 R:3 It: 531 B1/K:0.3878 K:2.90E+05 MSY:2.24E+05 SSE:5.5004260E+1
							R:4 It: 286 B1/K:0.3878 K:2.90E+05 MSY:2.24E+05 SSE:5.5004258E+0
	total nu	umber of co	mbinations (I	oatch job)	144		R:6 It: 292 B1/K:0.3878 K:2.90E+05 MSY:2.24E+05 SSE:5.5004185E+
							R:7 It: 269 B1/K:0.3878 K:2.90E+05 MSY:2.24E+05 SSE:5.5004184E+
							K.8 IL SUZ D1/K.0.3878 K.2.90E+05 WIST.2.24E+05 SSE.5.5004185E+
							Processing time: 0h0m 34/348
							Current par of the batch inh haing processed]/[tetal aurobas of the

×

Results (output) will be stored in the excel file with time stamp

List of results of 1st 25 runs (excel file)

Time	0h2m	No of jobs	60	Average	0.0388	Min/job	Sec/job	2.33														
Parameters	Model	B1/K	q(LOT-PI)	MSY	K																	
Range (step)	Fox and Schaefer	0.1-1 by 0.2	2.3d-6-2.3d-6 by 2.3d-6-1	120-280 by 30	900																	
Flag (0: fixed / 1: estimate)		1	1	1	0																	
Biomass unit in 1,000 tons																						
No	Model	B1/K	q	MSY(min)	MSY(start)	MSY(max)	K(min)	K(start)	K(max)	B1/K[Est]	R2	q(LOT-	RMS	r	K[Est]	MSY	Bmsy	Fmsy	B/Bmsy	F/Fmsy	TB	note
1	Schaefer	0.1	2.3d-6	120	120	280	290	900	1200													FATAL: MSY bounds do not include starting guess.
2	Schaefer	0.1	2.3d-6	120	150	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
3	Schaefer	0.1	2.3d-6	120	180	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
4	Schaefer	0.1	2.3d-6	120	210	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
5	Schaefer	0.1	2.3d-6	120	240	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
6	Schaefer	0.1	2.3d-6	120	270	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
7	Schaefer	0.3	2.3d-6	120	120	280	290	900	1200													FATAL: MSY bounds do not include starting guess.
8	Schaefer	0.3	2.3d-6	120	150	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
9	Schaefer	0.3	2.3d-6	120	180	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
10	Schaefer	0.3	2.3d-6	120	210	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
11	Schaefer	0.3	2.3d-6	120	240	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
12	Schaefer	0.3	2.3d-6	120	270	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
13	Schaefer	0.5	2.3d-6	120	120	280	290	900	1200													FATAL: MSY bounds do not include starting guess.
14	Schaefer	0.5	2.3d-6	120	150	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
15	Schaefer	0.5	2.3d-6	120	180	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
16	Schaefer	0.5	2.3d-6	120	210	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
17	Schaefer	0.5	2.3d-6	120	240	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
18	Schaefer	0.5	2.3d-6	120	270	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
19	Schaefer	0.7	2.3d-6	120	120	280	290	900	1200													FATAL: MSY bounds do not include starting guess.
20	Schaefer	0.7	2.3d-6	120	150	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
21	Schaefer	0.7	2.3d-6	120	180	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
22	Schaefer	0.7	2.3d-6	120	210	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
23	Schaefer	0.7	2.3d-6	120	240	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
24	Schaefer	0.7	2.3d-6	120	270	280	290	900	1200	1.006	0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit
25	Schaefer	0.9	2.3d-6	120	120	280	290	900	1200													FATAL: MSY bounds do not include starting guess.

Combinations (scenarios)

Results (estimated parameters)

How to select the most optimum parameters?

(1) Select runs with "ASPIC ended normally (converged)"

F/Fmsy	ТВ	note	
		FATAL: MSY bounds do not include starting guess.	
0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit	
0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit	
0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit	
0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit	
0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit	
		FATAL: MSY bounds do not include starting guess.	NG
0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit	
0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit	
0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit	
0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit	
0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit	
		FATAL: MSY bounds do not include starting guess.	NG
0.6388	649.3	NOTE: ASPIC ended normally. The output file is lot.fit	

How to select the most optimum parameters?

(2) Sort by RMS (ascending) & R2(descending)

Select the run with <u>smallest</u> and <u>largest</u> value, respectively.

R2	q(LOT-	RMS	r	K[Est]	MSY	Bmsy	Fmsy	B/Bmsy	F/Fmsy	ТВ
0.36	2.109E-06	0.4877	0.569933	900	188.7	331.1	0.5701	1.661	0.5338	567.7
0.36	2.109E-06	0.4877	0.569933	900	188.7	331.1	0.5701	1.661	0.5338	567.7
0.36	2.109E-06	0.4877	0.569933	900	188.7	331.1	0.5701	1.661	0.5338	567.7
0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3
0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3
0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3
0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3
0.28	1.779E-06	0.5066	0.830222	900	186.8	450	0.4151	1.406	0.6388	649.3

RMS: Root Mean Square

Uncertainties, projection, risk assessment and Kobe I+II

96

Step 1: Future projection by different catch level from the current catch (1)

Import the input file

Risk assessment		x
*.inp file_folder C:¥RiskAssessment¥Sample 3¥		Search
LOT_I.inp	Run	Close
	>	
	<i>C</i>	()

Step 1 Future projection TB (MSY) & F (MSY) by different catch level from the current catch 0%

Uncertainties, projection, risk assessment and Kobe I+II

Step 2a ASPIC bootstrap

- Re-sample data 1,000 times to estimate Uncertainties.
 - \rightarrow different catch levels (e.g. 0%, ±20%, ±40%)

Uncertainties, projection, risk assessment and Kobe I+II

101

Uncertainties, projection, risk assessment and Kobe I+II

What is "Compute Pr (Risk) (%)" ?

To compute "Risk <u>Probability</u>" <u>violating</u> MSY levels (TB & F) by catch level and year <u>incorporating uncertainties.</u>

Uncertainties, projection, risk assessment and Kobe I+II

Uncertainties, projection, risk assessment and Kobe I+II

Contents

(1) Outline

- (2) Menu-driven software
 - CPUE standardization
 - Stock and Risk assessment
 - Overview
 - Production model (ASPIC and JABBA)
 - Age structured production model (ASPM)
 - Management decision making tool (Kobe I+II)

(3) Summary

JABBA

Just Another Bayesian Biomass Assessment Under contraction

Theoretically Best Production model

There are several similar hand-made models JABBA : best → General (standardized) for anyone RE: Bayesian, Graphics, Diagnosis, MCMC,

Evolution of Production Model

Evolution									
				Equilibrium	Erroi	rtype			
		Туре	Authors	Condition (EC) (death=increase) (never happen)	Observation (data) error	Process (model) error	better) (better) Approach	Comments	
			Shaeffer(1954),					Classical	
old		Original PM	PT(1969) & Fox	YES				(Not recommended	
			(1970)					to use due to EC)	
		ASPIC (Ver5)	Prager (2004)					Basic, standard & common (RFMOs &	
		ASPIC (ver7.5)	Prager (2017)	NO				fishing countries)	
		JABBA						Best but high	
		(Just Another	Minkor (2019)					standard (slowly	
ne	2W	Bayesian Biomass	vviliker (2018)					expanding)	
		Assessment)						Recommended	

JAGS : Just Another Gibbs (MCMC) Sampler

Sample outputs (many useful graphs)

To be explained in the users manual when the software is completed (2024)

Estimated parameters with Uncertainties (JAGS MCMC)

Bayesian (Priors and Posteriors)

Biomass

One weak point : JABBA

No Risk assessment \rightarrow <u>We will add Risk assessment to JABBA</u>

Menu-driven JABBA software (2024) 🗲 Most Powerful PM

JABBA

Risk assessment

Contents

(1) Outline

- (2) Menu-driven software
 - CPUE standardization
 - Stock and Risk assessment
 - Overview
 - Production model (ASPIC and JABBA)
 - Age structured production model (ASPM)
 - Management decision making tool (Kobe I+II)

(3) Summary

			Data and parameters required											
	Models	Example	Stock structure	Global catch	Abundance indices (CPUE or fisheries in depend indices such as acoustic/areal survey data)	size/age	M (natural mortlity)	LW relation + growth eq	Maturity + fecundity	Space and movement				
Data	limit approach	SRA(CMSY) (Catch only)												
Duoduction model		ASPIC												
	Production model													
	(without abundance indices)	VPA												
Age/size	(with abundance indices)	ADAPT—VPA												
model	Simpler integrated model (I)	ASPM	lr	nte	r-media	ate mo	od	el						
	Integrated model (II)	CASAL and SS3								(option) 52				

ADMB Implemented ASPM software

Tom Nishida (Stock assessment software developing team)

Rebecca Rademeyer + Doug Butterworth (Univ of Cape Town, South Africa)

(2010-2015)

ADMB: Automatic Differentiation Model Builder Non-linear statistical modeling

Original ASPM (ICCAT)

Restorep (1997) FORTAN (outdated)

Re-coded by AD Model Builder

We developed the user's friendly software (menu-driven)

6 years

Why ASPM was selected as one of our menu-driven software ?

5 RFMO meeting (2007 and 2009) recommended

Need to compare & evaluate results <u>among a few SA models</u>^(*) as each model has <u>pros & cons</u>

(*) 'Simple', **'intermediate'** & 'advanced(integrated)' model

(different structures & data sets)

PM is the subset of ASPM ASPM is the subset of SS3/MFCL a big family !

ASPM flow

ASPM: 6 input files

- Control.inp (basic settings) years, fleet, area SR, σR,
 aspm.par (quess for SBO and steepness)
- Biological.inp

(Age specific M+WT+Maturity+Fecundity)

- index.inp (STD CPUE by fleet)
- Fishery.inp (Catch and CAA by fleet)
- **Projection.inp** (Catch or F scenario)

ASPM flow

BATCH JOB (GRID SEARCH)

To search optimum parameters while <u>avoiding</u> local minimum problem (i.e. to select <u>incorrect</u> parameters)

Batch job procedure

BatchASPM.exe file

Batch job menu : Setting 4 parameter search ranges

ASPM grid search (batch job) application (ASPM software version 3)

_ _ ×

This application will implement the batch job in order to search optimum ASPM parameters using the grid search technique. Maximum 5 important parameters can be searched in one catch job, i.e., "h" (steepness) in ASPM.pin file, "SigmaR" value for the stock recruitment (SR) fluctuations in control.inp, "CV" values for CPUE in index.inp file and "weighting" values for CAA in fishery.inp file .

Steps (1) Users will select parameters (click the box) to be used for the grid search and then enter their minimum, maximum and class values. The number of combination will be automatically evaluated.

(2) If users enter the class value which cannot make the integer value for number of combination, the maximum class value will be automatically evaluated.

(3) Results of the grid search will be available in the output_datetime.csv file in the same folder. For example, output_201404011521.csv file. This means that this file was created at 15 hour 21 minute in April 11, 2014.

- Parameters	Coption of batch job
Name country code minimum maximum class value no. of (CPUE) combinations	Start Pause Termination
✓ h (steepness) 0.60 ★ 0.95 ★ 0.05 ★ 8	
control.inp file	
Sigma (SR fluctuation) $0.10 \div 1.00 \div 0.10 \div 10$	
index.inp file	
✓ CV (CPUE1) JPN 0.10 ★ 0.60 ★ 0.10 ★ 6	
CV (CPUE2) KOR 0.10 * 0.60 * 0.10 * 6	
 Note (1) If you have 2 CPUE series in index.in file (for example, Japan and Korea), then enter J (for Japan) and K (for Korea). J and K are just example. You can enter maximum 4 letters as the country code in this box. (2) Number of CPUE CV depends on #Number of indices in the Index.inp file, which will be automatically recognized by this application and corresponding number of entry boxes will appear in the setting window. Max 3 CV (CPUE) can be used. 	
fishery.inp file	
✓ Weighting (CAA) 0.10 ↓ 1.00 ↓ 0.10 ↓ 10	
Note (3) Number of weighting (CAA) box depends on "#Number of fleets" in control file, which will be automatically recognized by this application and corresponding number of entry boxes will appear.	Processing time: 00h00m 0/28800
Total number of batch jobs: 28800	[Current no. of the batch job being processed]/[total number of the batch job]

Parameters Name country code	minimum	maximum	class value	no. of
ASPM.pin file				combinations
🗹 h (steepness)	0.60 .	0.95 🕂	0.05 +	8
control.inp file				
Sigma (SR fluctuation)	0.10 🔹	1.00 .	0.10 🔹	10
index.inp file				
CV (CPUE1)	0.10	0.60 :	0.10 ÷	6
CV (CPUE2) KOR	0.10 .	0.60 .	0.10 🔹	6
fishery.inp file				
E WILLIN (CAN)	0 10 -	1 00 - 0	0 10 - 1	0

 fishery.inp file

 ✓ Weighting (CAA)
 0.10 ÷ 1.00 ÷ 0.10 ÷ 10

 Note (3) Number of weighting (CAA) box depends on "#Number of fleets" in control file, which will be automatically recognized by this application and corresponding number of entry boxes will appear.

 Total number of batch jobs:
 28800

Snap shot during processing

ASPM grid search (batch job) application (ASPM software version 3)

_ 🗆 🗡

This application will implement the batch job in order to search optimum ASPM parameters using the grid search technique. Maximum 5 important parameters can be searched in one catch job, i.e., "h" (steepness) in ASPM.pin file, "SigmaR" value for the stock recruitment (SR) fluctuations in control.inp, "CV" values for CPUE in index.inp file and "weighting" values for CAA in fishery.inp file .

- Steps (1) Users will select parameters (click the box) to be used for the grid search and then enter their minimum, maximum and class values. The number of combination will be automatically evaluated.
 - (2) If users enter the class value which cannot make the integer value for number of combination, the maximum class value will be automatically evaluated.
 - (3) Results of the grid search will be available in the output_datetime.csv file in the same folder. For example, output_201404011521.csv file. This means that this file was created at 15 hour 21 minute in April 11, 2014.

- Parameters	Option of batch job
Name country code minimum maximum class value no. of (CPUE) combinations	Start Pause Termination
M h (steepness) 0.60 v 0.60 v 0.60 v 0.60 v 0.60 v 0.10 v	0.4 1990 6.8953
control.inp file	0.4 1992 6.0693
✓ Sigma (SR fluctuation) 0.10 ↓ 0.50 ↓ 0.10 ↓ 5	0.4 1994 5.1545 0.4 1995 5.3555
index.inp file	0.4 1996 5.2435 0.4 1997 4.3752
CV (CPUE1) JPN 0.10 × 0.50 × 0.10 × 5	0.4 1998 4.7748 0.4 1999 4.6303
✓ CV (CPUE2) KOR 0.10 ≠ 0.50 ≠ 0.10 ≠ 5	0.4 2000 3.9942 0.4 2001 3.9847
	0.4 2002 3.2245 0.4 2003 3.8008 0.4 2003 4.1352
Note (1) If you have 2 CPLIE series in index in file (for example, Japan and Korea), then enter	0.4 2005 4.6661 0.4 2005 4.262
J (for Japan) and K (for Korea). J and K are just example. You can enter maximum 4 letters as the country code in this box.	0.4 2007 4.4729 0.4 2008 4.1479
(2) Number of CPUE CV depends on #Number of indices in the Index.inp file, which will be automatically recognized by this application and corresponding number of	0.4 2009 3.3141 0.4 2010 3.4871
entry boxes will appear in the setting window. Max 3 CV (CPUE) can be used.	0.4 2011 5.2006 0.4 2012 6.3754
fishery.inp file	End data section
Weighting (CAA) 0.10 0.50 0.10 5	
Note (3 umber of weighting (CAA) box depends on "#Number of fleets" in control file, hich will be automatically recognized by this application and corresponding umber of entry boxes will appear.	Processing time: 0h8m 208/2500
Total number of batch jobs: 2500	[Current no. of the batch job being processed]/[total number of the batch job]

Output (excel): All results are recorded. (No pen & paper methods) Beginning part (run # 1-10)

	A	В	С	D	Е	F	G	Н	Ι	J	K	L	M
1	Processing time:	4h36m											
2		0.6-0.9 by 0.1	0.1-0.4 by 0.1	J0.1-J0.4 by 0.1	0.1-0.4 by 0.1								
3													
4	No	h (steepness)	Sigma (SR)	CPUE	Weighting (CAA)	SSB0	Total likelihood	R2	SSB	MSY	SSB/SSBmsy	F/Fmsy	Error Message
5	1	0.6	0.1	J0.1	0.1	394	-14.481	0.498	135	30	1.07	1.4	
6	2	0.6	0.1	J0.1	0.2	400	2.901	0.484	141	30	1.11	1.33	
7	3	0.6	0.1	J0.1	0.3	413	20.075	0.463	156	31	2.14	0.54	
8	4	0.6	0.1	J0.1	0.4	785	63.918	0.233	539	61	2.11	0.33	Warning Hessian does not appear to be positive definite
9	5	0.6	0.1	J0.2	0.1	394	-14.481	0.498	135	30	1.07	1.4	
10	6	0.6	0.1	J0.2	0.2	400	2.901	0.484	141	30	1.11	1.33	
11	7	0.6	0.1	J0.2	0.3	413	20.075	0.463	156	31	2.14	0.54	
12	8	0.6	0.1	J0.2	0.4	785	63.918	0.233	539	61	2.11	0.33	Warning Hessian does not appear to be positive definite
13	9	0.6	0.1	J0.3	0.1	394	-14.481	0.498	135	30	1.07	1.4	
14	10	0.6	0.1	J0.3	0.2	400	2.901	0.484	141	30	1.11	1.33	

132

ASPM flow

How to select the most optimum parameters? Sort by total likelihood (ascending) (smaller value better) and R2(descending) (higher value better)

Sorted results							Low ➔ High	High ➔ Low					
	Run No	h (steepness)	Sigma (SR)	CPUE	Weighting (CAA)	SSB0	Total likelihood	R2	SSBmsy	MSY (1000 tons)	SSB/SSB msy	F/Fmsy	Error Message
and	49	0.6	0.4	J0.1	0.1	536	-21.959	0.907	213	41	1.29	0.88	
coloction of	53	0.6	0.4	J0.2	0.1	536	-21.959	0.907	213	41	1.29	0.88	
ontimum	57	0.6	0.4	J0.3	0.1	536	-21.959	0.907	213	41	1.29	0.88	
parameters	61	0.6	0.4	J0.4	0.1	536	-21.959	0.907	213	41	1.29	0.88	
	177	0.8	0.4	J0.1	0.1	476	-21.853	0.907	193	50	1.78	0.47	
	181	0.8	0.4	J0.2	0.1	476	-21.853	0.907	193	50	1.78	0.47	
	185	0.8	0.4	J0.3	0.1	476	-21.853	0.907	193	50	1.78	0.47	
	189	0.8	0.4	J0.4	0.1	476	-21.853	0.907	193	50	1.78	0.47	
	241	0.9	0.4	J0.1	0.1	460	-21.802	0.907	189	55	1.77	0.4	
	245	0.9	0.4	J0.2	0.1	460	-21.802	0.907	189	55	1.77	0.4	
	17	0.6	0.2	J0.1	0.1	404	-16.003	0.597	133	31	1.03	1.43	Warning Hessian does not appear to be positive definite
	21	0.6	0.2	J0.2	0.1	404	-16.003	0.597	133	31	1.03	1.43	Warning Hessian does not appear to be positive definite

To produce graphs (point estimates), click ASPM.rep (numerical results)

ASPM flow

Menu : MCMC (Markov Chain Monte Carlo)

To evaluate uncertainties by re-samplings

ASPM flow

Kobe II (strategy diagram) Bigeye tuna (Indian Ocean)

Kobe I_II (ver6,2023)	×
Kobe I (Kobe plot) (Stock status trajectory plot)	
Kobe II (Risk assessment: Strategy matrix and diagram)	
Manual	

Contents

(1) Outline

- (2) Menu-driven software
 - CPUE standardization
 - Stock and Risk assessment
 - Overview
 - Production model (ASPIC and JABBA)
 - Age structured production model (ASPM)
 - Management decision making tools (Kobe I+II)

(3) Summary
Kobe I+II :

Important Management decision making tools

Kobe I (Kobe plot) (stock status trajectory)

- Effective tool to understand changes of historical status of stock
- Recent stock status \rightarrow important for management advice

Kobe II (Strategy matrix/diagram) (Risk assessment)

• Effective tool to understand Probabilities of risks to violate MSY for F and Biomass in the future by different catch level → advice for TAC

Kobe I+II : Visualization is important

Comprehensive tool: to bridge scientists → managers/industry

Why we call KOBE (神戸) ? Any relation to the Kobe beef?

Kobe I (Kobe plot) + II (strategy matrix) agreed by 5 <u>tuna</u> RFMO meetings (IOTC+4)

Kobe I (Kobe plot) Stock status trajectory plot **First** meeting in 2007 (**Kobe**, Japan) **Second** meeting in2009 (Barcelona, Spain) Kobe II (strategy matrix) Spreading also to demersal RFMOs and others (e.g. NAFO, SEAFO, NPFC.....)

Introduction :Kobe I+II Most recent version(2023)

Contents								
	Acr	onyms	02					
	1.	Introduction	03					
	2.	Requirements for PC and General remarks	04-05					
	3.	Installation	05-09					
	4.	Kobe I (Kobe plot) (stock status trajectories)						
		5.1 A single plot with a confidence surface	09-19					
		5.2 Single/Multiple Kobe plots without confidence surfaces	20-25					
		5.3 Multiple comparisons	26-30					
		5.4 Common functions (Move, Edit, Zoom and Scroll)	31-39					
	5.	Kobe II (Strategy diagram)	40-49					
	Ref	erences	50					
	Appendix A: History of the software development							
	Арј	pendix B: Software specification	52					

Kobe I_II (ver6,2023) Kobe I (Kobe plot)

Single trajectory with a confidence surface

Single or Multi trajectories (no confidence surface)

Multiple comparisons among stock status points

Back

Х

INPUT

		Colu	mn 1	Column 2	Column 3	Column 4	Column 5
row 1		ye	ear	Biomass ratio	F ratio	Bratio (Uncertainties)	F(ratio) (Uncertainties)
row 2		19	955	1.89	0.16	0.81	1.06
row 3		19	956	1.86	0.23	1.01	0.79
row 4		19	957	1.81	0.18	1.31	0.55
row 5		19	958	1.81	0.20	1.25	0.57
row 6		19	959	1.81	0.22	1.51	0.42
row 7		19	960	1.79	0.19	1.08	0.70
row 8		19	961	1.80	0.16	1.39	0.49
row 9		19	962	1.82	0.16	0.80	1.13
row10	1962			1.84	0.10	0.92	0.88
row 11		19	964	1.87	0.16	1.53	0.41
row 12	1965		965	1.85	0.17	1.06	0.75
					(omitted)		
row 56		20	009	0.83	1.02	0.74	1.32
row 57		20	010	0.88	0.85	1.42	0.46
row 58		20	011	0.98	0.85	0.96	0.84
					(omitted)		
row 59						0.88	1.02
row 60					1	0.91	0.90
row 61			Poir	nt estimates		0.99	0.80
row 62			101			0.77	1.14
row 63			(19	55-20211)		0.84	1.09
row 64						3.01	0.09
row 65						1.23	0.60
row 66				Uncertainties		2.32	0.18
row 67	67		(500			0.88	0.98
row 68	(500			times bootstrap)	1.58	0.39
row 69						0.93	0.87
					(omitted)		
row 495						1.05	0.74
row 496						1.23	0.58

Graph settings to adjust formats of the Plot (many functions to produce users' desired plot)

Graph Settings		Graph Settings	
Points and lines Trajectory, confidence surfa	ace and phase	Points and lines Trajectory, confidence surfa	ce and phase
Select Years to Display 1st Year: 1955 · 555 Years	Title	Trajectory Line	Phase color
✓ 1955 ✓ 1959 ✓ 1963 ✓ 1968 ✓ 1972 ✓ 1956 ✓ 1960 ✓ 1964 ✓ 1969 ✓ 1973 ✓ 1957 ✓ 1961 ✓ 1965 ✓ 1970 ✓ 1974 ✓ 1958 ✓ 1962 ✓ 1967 ✓ 1971 ✓ 1975	Font Size: 18 3 B	Show Plot Points Style Circle · Stock status points front ·	Line width of XY axis Color: Width: 5 Style: Solid ·
 All Years 	Limit Reference Legend	Show Confidence Surface	Phase name Label
Axis Title Min. Max. Increment X: TB/TBmsy · -0.25 4.23 1	$X(\%)$: 0.6 \bigcirc X: TB(limit) = 0.6 x TBmsy $Y(\%)$: 1.3 \bigcirc Y: F(limit) = 1.3 x Fmsy	 ✓ Show Contour Labels ✓ 5% ✓ 75% 	☑ Overfished Horizontal ☑ Overfishing Vertical
Y: F/Fmsy0.37 2.1 1	Color: Width: 1 🗘 Style: Solid ·		Recovering Horizontal
Font Size: 20 B Reset Change titles of XY axis to other names	Target Reference Point	Font Size: 9 5 B	Font Size: 12 B
Mark	X(%): 1.0 X: TB(target) = 1.0 x TBmsy	Show PieChart(% Composition of 4 phases) Font Size: 10 B	Default font name: Times New Roman · Apply for all
Mark Size: 10 Mark Color: Font Size: 10 B Color:	Y(%): 1.0 \bigcirc Y: F(target) = 1.0 x Fmsy Color: Width: 1 \bigcirc Style: Solid Font Size: 10 \bigcirc B \bigcirc	Align confidence surface X: 0.02 \$ Y: 0.00 \$	Subscript MSY position alignment Axis Label: X: -18 Y: -5 5 LRP Name: X: -20 Y: 0 5 TRP Name: X: -20 Y: 0 5
	OK Cancel		OK Cancel

_

 \times

INPUT

	Column 1	olumn 1 Column 2 Column 3 Column 4 Column 5 C		Column 6	Column 7			
Row 1	Year	Biomass ratio (1)	Fratio(1)	Biomass ratio (2)	Fratio(2)	Biomass ratio (3)	Fratio(3)	
Row 2	1970	3.74	0.03	3.13	0.01	5.31	0.00	
Row 3	1971	4.72	0.02	3.12	0.01	5.31	0.00	
Row 4	1972	6.12	0.01	2.92	0.01	5.37	0.00	
Row 5	1973	7.51	0.01	2.83	0.01	5.44	0.00	
Row 6	1974	7.81	0.02	2.13	0.01	5.41	0.00	
Row 7	1975	6.71	0.04	1.86	0.02	5.46	0.00	
Row 8	1976	5.29	0.04	1.77	0.03	5.41	0.00	
Row 9	1977	4.39	0.03	1.99	0.02	5.45	0.01	
Row 10	1978	4.09	0.04	2.17	0.01	5.39	0.01	
Row 11	1979	3.95	0.05	2.19	0.01	5.38	0.01	
				omitted				
Row 40	2008	1.72	0.61	2.31	0.15	5.53	0.06	
Row 41	2009	1.65	0.47	2.25	0.16	5.57	0.06	
Row 42	2010	1.65	0.63	2.19	0.16	5.56	0.11	
Row 43	2011	1.62	0.63	2.13	0.17	5.41	0.23	
Row 44	2012	1.57	0.63	2.09	0.23	5.12	0.23	
Row 45	2013	1.51	0.63	2.01	0.27	4.83	0.29	
		1 st da (AS	ta set <mark>PM)</mark>	2 nd data set (JABBA)		3 rd data set (SS3)		

Graph settings to adjust formats of the Plot (many functions are available to produce users' desired plot)

Graph Settings		Graph Settings			
Points and lines Trajectory, confidence surfa	ace and phase	Points and lines Trajectory and Phases			
Select Years to Display 1st Year: 1955 · 55 Years	Title	Select Scenarios to Display and the Line Colors.	Default font name: Times New Roman · Apply for all		
✓ 1955 ✓ 1959 ✓ 1963 ✓ 1968 ✓ 1972 ✓ 1956 ✓ 1960 ✓ 1964 ✓ 1969 ✓ 1973 ✓ 1957 ✓ 1961 ✓ 1965 ✓ 1970 ✓ 1974 ✓ 1958 ✓ 1962 ✓ 1967 ✓ 1971 ✓ 1975	Font Size: 18 C B	Trajectory Line Width 2 Style Arrow	Subscript MSY position alignment Axis Label: X: -18 Y: -5 5 LRP Name: X: -20 Y: 0 5		
Axis All Years Axis Min. X: TB/TBmsy Y: F/Fmsy -0.37 2.1	$X(\%)$: 0.6 Imit Reference Legend $X(\%)$: 0.6 Imit Reference Legend $X(\%)$: 1.3 Imit Reference Legend $Y(\%)$: 1.3 Imit Reference Legend $Y(\%)$: 1.3 Imit Reference Legend Y' : $F(limit) = 0.6 \times TBmsy$ Y' : $F(limit) = 1.3 \times Fmsy$ Color: Imit Reference Legend Imit Reference Legend Imit Reference Legend Y' : $F(limit) = 1.3 \times Fmsy$ Color: Imit Reference Legend Imit Reference Legend Imit Reference Legend Y' : $F(limit) = 1.3 \times Fmsy$ $F(limit) = 1.3 \times Fmsy$ Imit Reference Legend Y' : $F(limit) = 1.3 \times Fmsy$ Y' : $F(limit) = 1.3 \times Fmsy$ Y' : $F(limit) = 0.6 \times Tmsy$ Y' : $F(limit) = 0.6 \times Tmsy$	Phase color Line width of XY axis Color: Width: 5 Style: Solid	TRP Name: X: -20 🗘 Y: 0 🗘		
Font Size: 20 B Reset Change titles of XY axis to other names X: Y:	(2) Target Reference Point X(%): 1.0 (3126) X : TB(target) = 1.0 x TBmsy	Phase name Label Overfished Overfishing Vertical Recovering Horizontal			
Mark Mark Size: 10 Color: Font Size: 10 B Color:	Y(%): 1.0 Y: F(target) = 1.0 x Fmsy Color: Width: 1 Style: Solid Font Size: 10 B	Safe zone Horizontal · Font Size: 12 B			
	OK Cancel		OK Cancel		

Kobe I_II (ver6,2023)	
Kobe I (Kobe plot)	

Single trajectory with a confidence surface

Single or Multi trajectories (no confidence surface)

Multiple comparisons among stock status points

Back

Х

INPUT

	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
Row 1	stock assessment model	Biomass ratio(point)	Biomass ratio(lower)	Biomass ratio(upper)	F/F _{MSY} (point)	F/F _{MSY} (lower)	F/F _{MSY} (upper)
Row 2	SS3	1.61	1.03	2.23	0.56	0.32	0.89
Row 3	ASPIC	2.31	2.04	2.56	0.83	0.68	1.01
Row 4	JABBA	1.57	1.01	2.08	0.49	0.35	0.66
Row 5	ASPM	2.12	1.45	2.56	0.34	0.24	0.49

Graph settings to adjust formats of the Plot (many functions available to produce users' desired plot)

		Graph Settings	
Axis	☑ Title	Points and lines Phases	
TitleMin.Max.IncrementX:TB/TBmsy·02.952Y:F/Fmsy·01.211	Comparisons among different stock assessments results Font Size: 18 B	Phase color	Default font name: Times New Roman · Apply for all
Font Size: 20 B Reset Change titles of XY axis to other names X: Y:	\Box Limit Reference Point Limit Reference Legend	Line width of XY axis Color: Width: 5 Style: Solid · Phase name Label	Subscript MSY position alignment Axis Label: X: -18 Y: -5 • LRP Name: X: -20 Y: 0 • TRP Name: X: -20 Y: 0 •
Label Select Data: SS3 · All Apply	$X(*0)$. I $Y(\%)$: $I.3$ \Box Y : $F(limit) = 1.3 \times Fmsy$ $Color:$ \Box $Width$: I I I $Style:$ Solid $Font Size:$ $I0$ B	Overfished Horizontal - Overfishing Vertical - Recovering Horizontal -	
Color: Width: 2 Style: Solid	✓ Target Reference Point Limit Reference Legend	Safe zone Horizontal · · · · · · · · · · · · · · · · · · ·	
Color: Width: 1 Style: Solid	X(%): 1.0 ↓ ✓ X: SB(target) = 1.0 x SBmsy Y(%): 1.0 ↓ ✓ Y: F(target) = 1.0 x Fmsy		
Circle name Font Size: 12	Color: Width: 1 Style: Solid · Font Size: 10 S B		

OK

Cancel

K	bbe I_II (ver6,2023)	×
	Kobe I (Kobe plot) (Stock status trajectory plot)	
	Kobe II (Risk assessment: Strategy matrix and diagram)	
	Manual	

INPUT

	Colur	mn 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	Column 8	Column 9	Column 10	Column 11	Column 12
Row 1			Catch	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Row 2	-40)%	25,781	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Row 3	-30	0%	30,078	0.02	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00
Row 4	M	SY	33,300	0.07	0.06	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.06
Row 5	-20)%	34,374	0.09	0.08	0.07	0.06	0.07	0.07	0.08	0.08	0.08	0.09
Row 6	-10)%	38,671	0.21	0.22	0.23	0.25	0.28	0.30	0.31	0.33	0.35	0.37
Row 7	09	%	42,968	0.32	0.37	0.41	0.45	0.47	0.50	0.53	0.55	0.57	0.58
Row 8	10)%	47,265	0.45	0.51	0.56	0.59	0.62	0.66	0.68	0.69	0.69	0.70
Row 9	20)%	51,562	0.57	0.64	0.67	0.70	0.71	0.73	0.74	0.75	0.76	0.78
Row 10	30)%	55,858	0.66	0.70	0.73	0.74	0.76	0.78	0.79	0.80	0.81	0.81
Row 11	40)%	60,155	0.71	0.74	0.76	0.79	0.80	0.82	0.83	0.83	0.84	0.84

Graph settings & editorial function to change formats of the diagram (many functions available to produce users' desirable plot)

Contents

(1) Outline

- (2) Menu-driven software
 - CPUE standardization
 - Stock and Risk assessment
 - Overview
 - Production model (ASPIC and JABBA)
 - Age structured production model (ASPM)
 - Management decision making tool (Kobe I+II)

<mark>(3) Summary</mark>

Summary (1)

Summary (2)

Different types of menu-drive software (simple & intermediate) are available to <u>suite</u> different objectives

If users want to utilize our software, we will offer free on-site training including theory and explanation of Input/Output.

After we will make sure that users can use software properly & understand theory & Input/Output, then software & manuals will be provided.

This is our <u>responsibility</u>.

Our ultimate goal

Stock assessments (SA) <u>for ALL</u> (no more struggling nor only for SA experts) for a happy & better life

Part II Future collaborative works (1) Training (2) Joint works using real data (important species)

No cost are needed as we are funded

by Japanese government, ODA (Official Development Assistance) and other funding agencies.

What is "Compute Pr (Risk) (%)" ?

To compute "Risk <u>Probability</u>" <u>violating</u> MSY levels (TB: Total Biomass and F)

in each catch level using Uncertainties (Bootstrap, MCMC)

For example

If <u>+20%</u> catch from the current catch level continued next 10 years (2033), and if <u>risk</u> probability (F) is <u>30%</u>, → It means that risk violating the MSY level(F) is 30%. Step 3: <u>How to compute</u> Pr (Risk) (%) by catch level (future year)?

If N.G., then you need to change other models \rightarrow 2 step GLM (available in our soft) But still NG \rightarrow try other models GAM, Regression tree, VAST, Negative binomial... But they are not available in our soft \rightarrow You need to use SAS, R etc.

But no worry from past 15 years experiences,

<u>There were No NG case ! So our soft & your data should be OK !</u>

5 RFMO meeting (2007 and 2009) recommended

Need to compare & evaluate results <u>among a few SA models</u>^(*) as each model has <u>pros & cons</u>

 (*) 'Simple', 'intermediate' & 'advanced(integrated)' model (different structures & data sets)
 If results are similar → certain & confident (e.g. IOTC)
 So we can contribute for 'Simple', and 'intermediate',

,while SA expert by SS3 (Advanced).

Win-win situation

Note : we don't recommend SRA (data poor : catch only method)

- Many assumptions
- Simple but need complex computation due to many assumptions

→ actually not quick & dirty (simple) method

- <u>Relative</u> assessment affected by assumptions
- If catch is regulated (e.g. TAC)

will not work (violation of assumption)

• It is much better to use stock assessment models with CPUE

Risk Prob (%) are computed in each catch level (ASPIC folder) for all projected years . (TB and F)

Kobe I+II Reference Point: F_{MSY}, SSB_{MSY}, TB_{MSY}... → important for management decision making

(population size)

SSB: Spawning Stock Biomass TB: Total Biomass

(fishing pressure)

F: Fishing mortality

Another Quiz

Kobe Bryant famous US NBA passed away (Jan 27, 2020)

Why his 1st name is Kobe?

Answer

His father (NBA player) Loves Kobe beef Kobe Steak House (USA)

That is why his father makes his first name Kobe !!