

Introduction Menu-driven fish stock assessment software April 18 (Thu), Ruang Rapat Gedung BNC (BRIN) (1PM-)

Tom Nishida (PhD)

Representative

[MENU] Menu-driven stock assessment software development team funded by Government of Japan (ODA) aco20320@par.odn.ne.jp https://www.esl.co.jp/products/menu Acknowledgements

Terima kasih & Arigato gozaimasu

Drs Fayakun Satria, Lilis Sadiyah and Ririk Sulistyaningsih National Research and Innovation Agency

to help and organize this meeting !

Additional Acknowledgements to esteemed Indonesian colleagues to work together (40 years !!) *(alphabetical order)*

Agus Budhiman	Dyah Retnowati	Khom Sakiro	Poppy Retno Andamari	Saraswati
Agustinus Widodo	Edwison Setya Firmana	Kusno Susanto	Prawira Atmaja Rintar	Satria Fayakun
Ali Suman	Fenni Eddrisea	Mahiswara	Reniwatenu	Saut Tampubolon
Bachtiar Gafa	Hari Eko Irianto	Mahiswara Sudardjo	Renny Wulansari	Subhat Nurhakim
Bram Setyadji	Hetty Priyanti Efendi	Muhamad Anas	Riana Handayani	Susiyanti
Budi Iskandar	Hety Hartaty	Mukti Zainuddin	Rista Devi Januar	Wudianto
Budi Nugraha	Imam Musthofa Zainudin	Nilanto Perbowo	Rudi Sujono	

From

National Research and Innovation Agency
Directorate General of Capture Fisheries (DGCF)
Research Institute for Tuna Fisheries (Bali)
Research Institute for Marine Fisheries (BPPL) (Muara Baru)
Research Center for Fisheries Management and Conservation (RCFMC)
Directorate of Fish Resources Management
Ministry of Marine Affairs and Fisheries
Center for Data, Statistic and Information
Harini

Informal meeting

Please ask any questions, make comments & discussion anytime...

unun chuttoretock com . 21/02077/

Important Abbreviation

- SA : <u>Stock A</u>ssessment
- RFMO : <u>Regional Fisheries Management Organizations</u> (example → IOTC, WCPFC, CCSBT...)
- F : Fishing mortality
- SSB (SB) : Spawning Stock Biomass
- TB : Total Biomass
- PM : Production Model

Self-Introduction Stock assessments (practical)

Fish GIS (<u>http://www.esl.co.jp/Sympo/</u>)

Study

Hokkaido University (BS) University of Washington (BS+MS) Tokyo University (PhD)

Work (39 years) FAO (BOBP+IPTP)(Sri Lanka) +

National Research Institute (Japan) (IOTC, SIOFA, CCSBT, SEAFO, NAFO)

SEAFDEC (resource person)

GIS, Reviewers & Neritic/Oceanic tuna <u>Happy to work with</u> <u>many bagus Indonesian scientists</u>

Objectives (this meeting)

Part 1 : To introduce most recent software (2024 April version)

Part 2 : To discuss Training & Collaborative works (future)

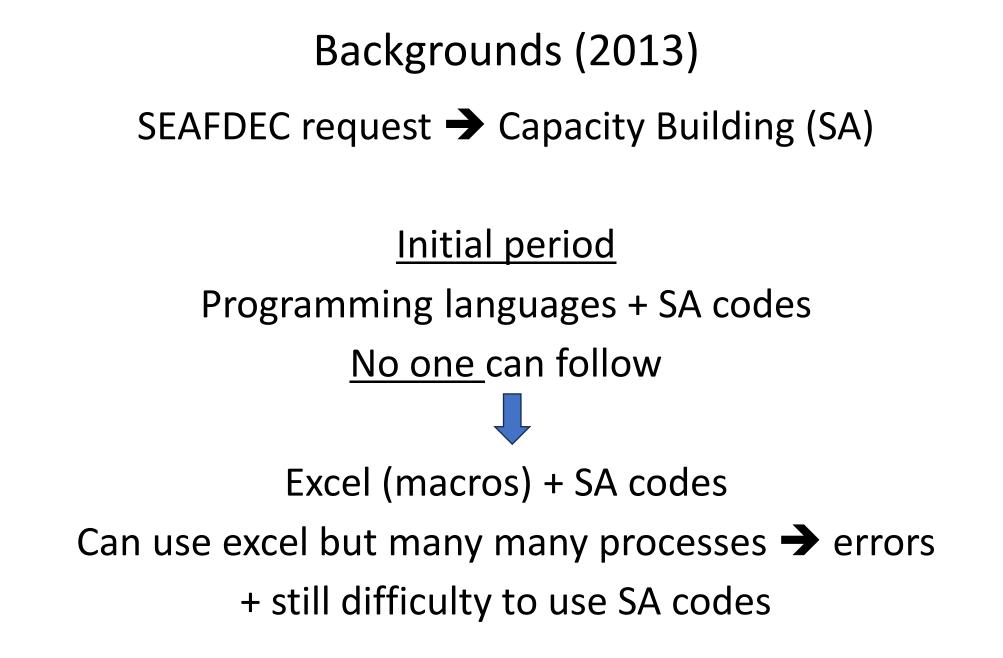
But, Our Final Goal Sustainable resources & fisheries (Indonesia)

through training Collaborative works

Part 1

To introduce most recent software (April 8, 2024 version)

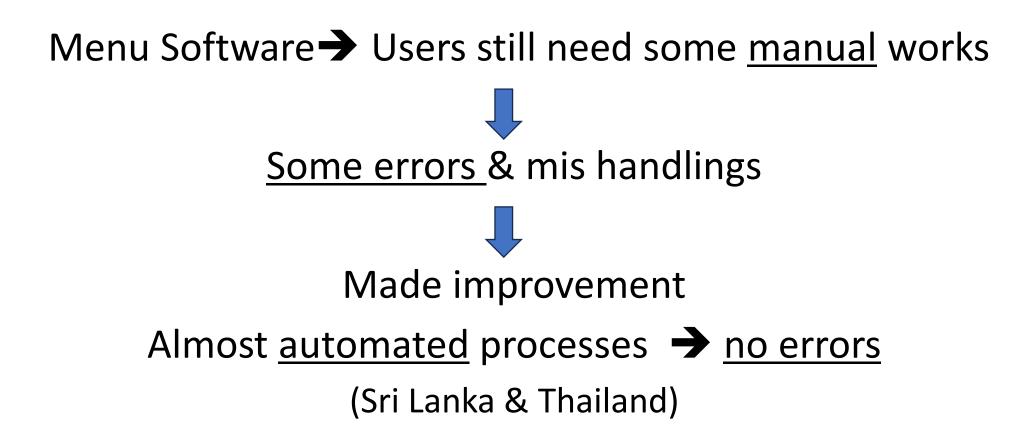
Contents (Part 1)


(1) Background & Objectives

- (2) Outline
- (3) Menu-driven software
 - CPUE standardization
 - Stock and Risk assessment
 - Review
 - Production model (ASPIC and JABBA)
 - Age-Structured Models
 - Management decision making tool (Kobe I+II)

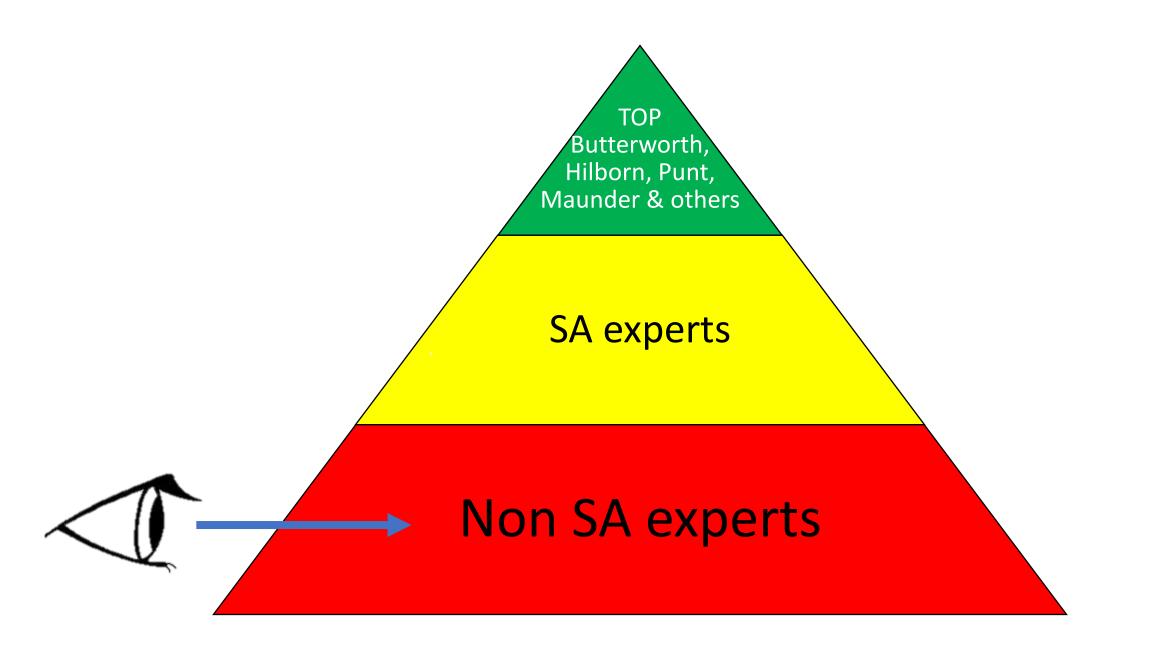
(4) Summary

Backgrounds


Stock assessment & Management Extremely important (world wide) Sustainable resources utilization & fisheries However SA is not easy to do for <u>non experts</u>

(1) Backgrounds (2014-2023)

To solve problems → Menu-driven software Anyone can do stock assessments (short time) without programming \rightarrow less errors CPUE standardization, ASPIC(production model) and management decision making tools (Kobe I+II) Successfully utilized and provided Management advices to SEAFDEC & ASEAN member countries.



OBJECTIVES : Menu-driven software

• To develop SA software for ALL (especially for beginners)

- → Users friendly operations by menus without programing
- → Anyone can do (short time) (less errors)

- To conduct 3 important works
 - → CPUE standardization
 - ➔ Stock assessment
 - → Management decision making tools (Kobe I+II)

WARNINGS : AUTOMATED (MENU) IS GOOD BUT USERS NEED...

- Users need understand theory & Input/Output
- In the **past** Capacity Building, we fully explained these points to users.
 - \rightarrow we will continue to do SO...
- IMPORTANT POINT

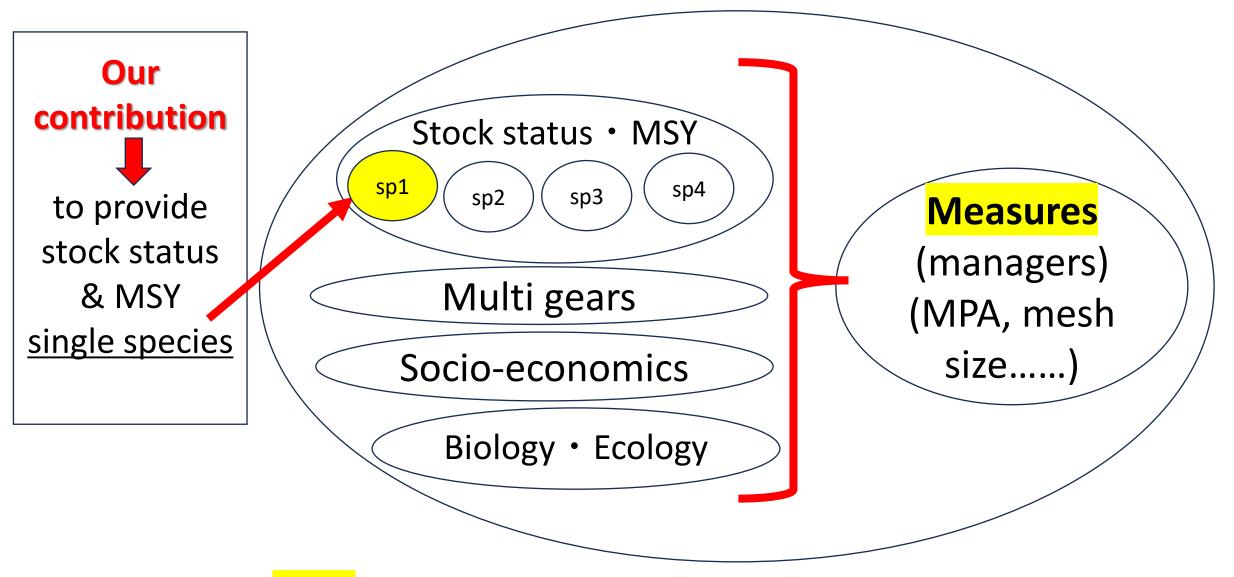
We protect users <u>not</u> to become <u>Auto-operating syndrome</u>.

→we don't want users

to be easy-going & lazy...

Lastly Very important issue

Developing countries

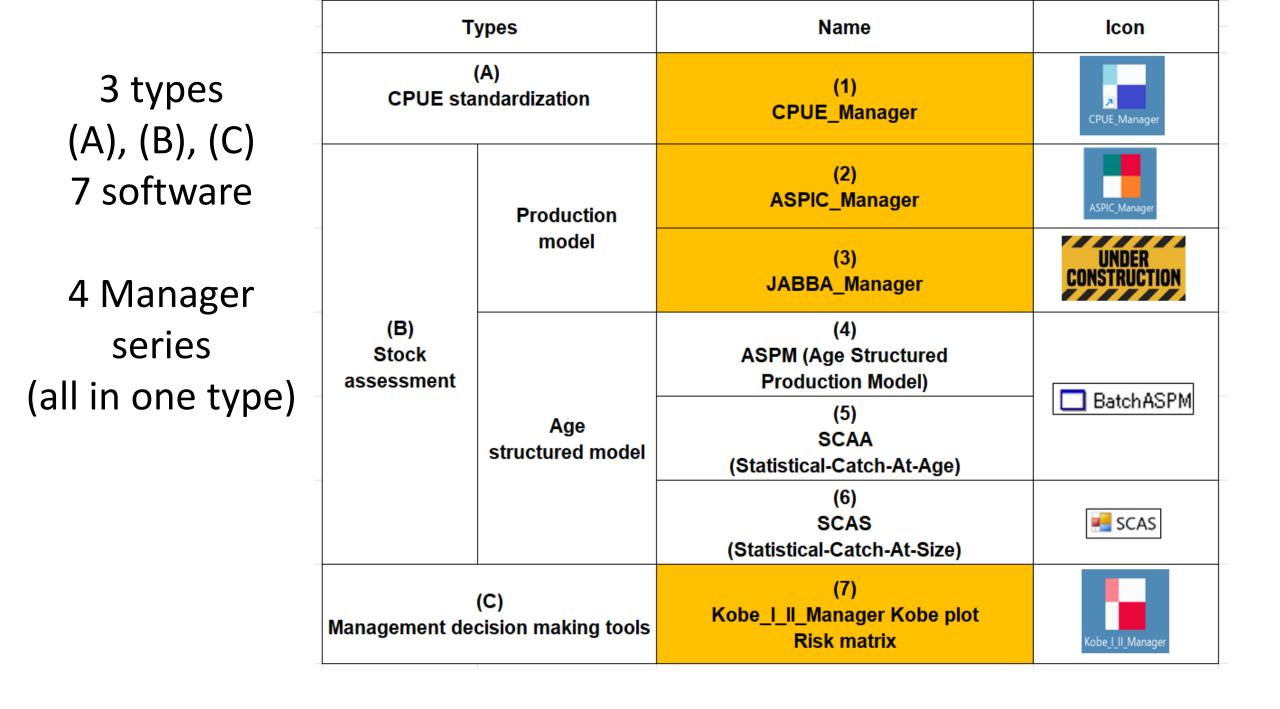

→ Need <u>Multi-gear & Multi-species fisheries Management (MMM)</u>

Our stock assessment → single species How we can help MMM?

Summary: How <u>our software can contribute to MMM</u>

Managers needs to consider all relevant factors together including our single species SA results

MMM -> Multi-gear & Multi-species fisheries Management


Contents (Part 1)

(1) Background & Objectives(2) Outline

- (3) Menu-driven software
 - CPUE standardization
 - Stock and Risk assessment
 - Review
 - Production model (ASPIC and JABBA)
 - Age-Structured Models
 - Management decision making tool (Kobe I+II)

(4) Summary

(2) Outline

Input information

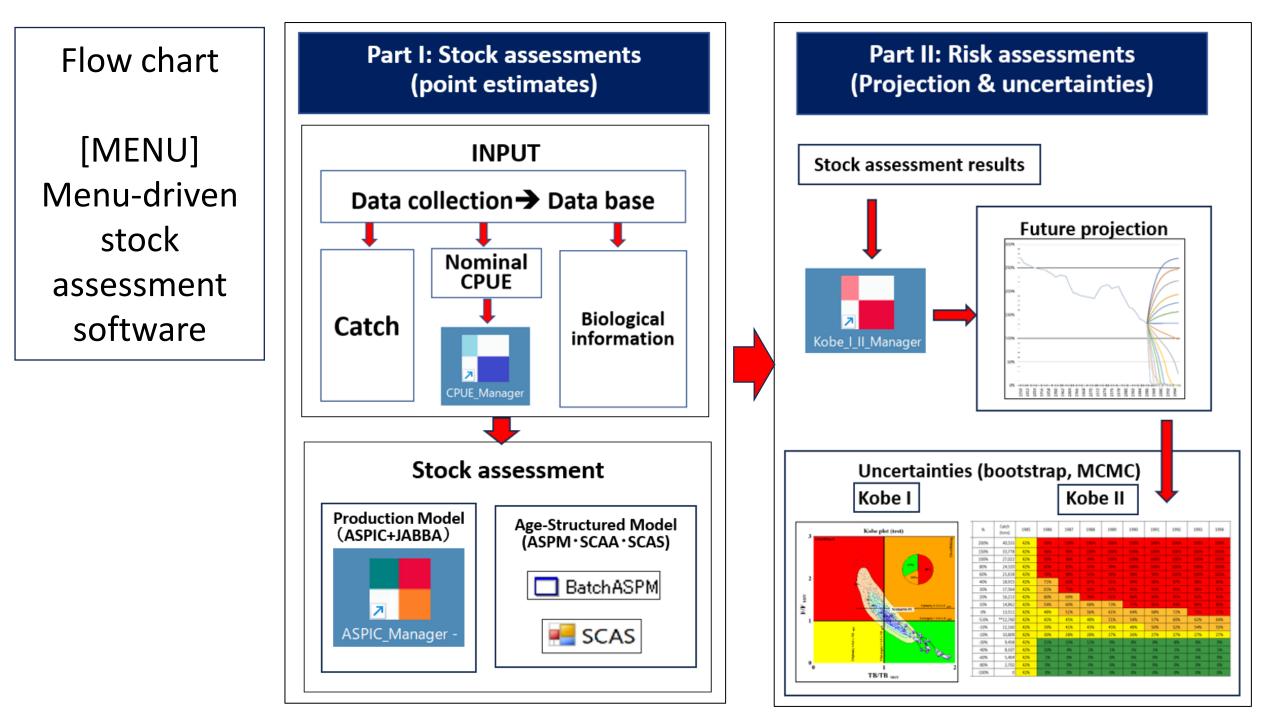
			Input					
	Types	Name	Catch	CPUE	Biology	SA + RA results	Priors (Bayesian Approach)	
CPU	(A) E standardization	(1) CPUE_Manager						
(B)	Production models (PM)	(2) ASPIC_Manager (3) JABBA_Manager						
Stock assessment	Age structured models	(4) ASPM						
(SA)		(5) SCAA						
		(6) SCAS						
	(C) ssessment (RA) and nt decision making tools	(7) Kobe I+II Manager						

CPUE_Manager, ASPIC_Manager, JABBA_Manager & Kobe I+II Manager

Why we call manger ?

Manager \rightarrow all-in-one, one system or suit

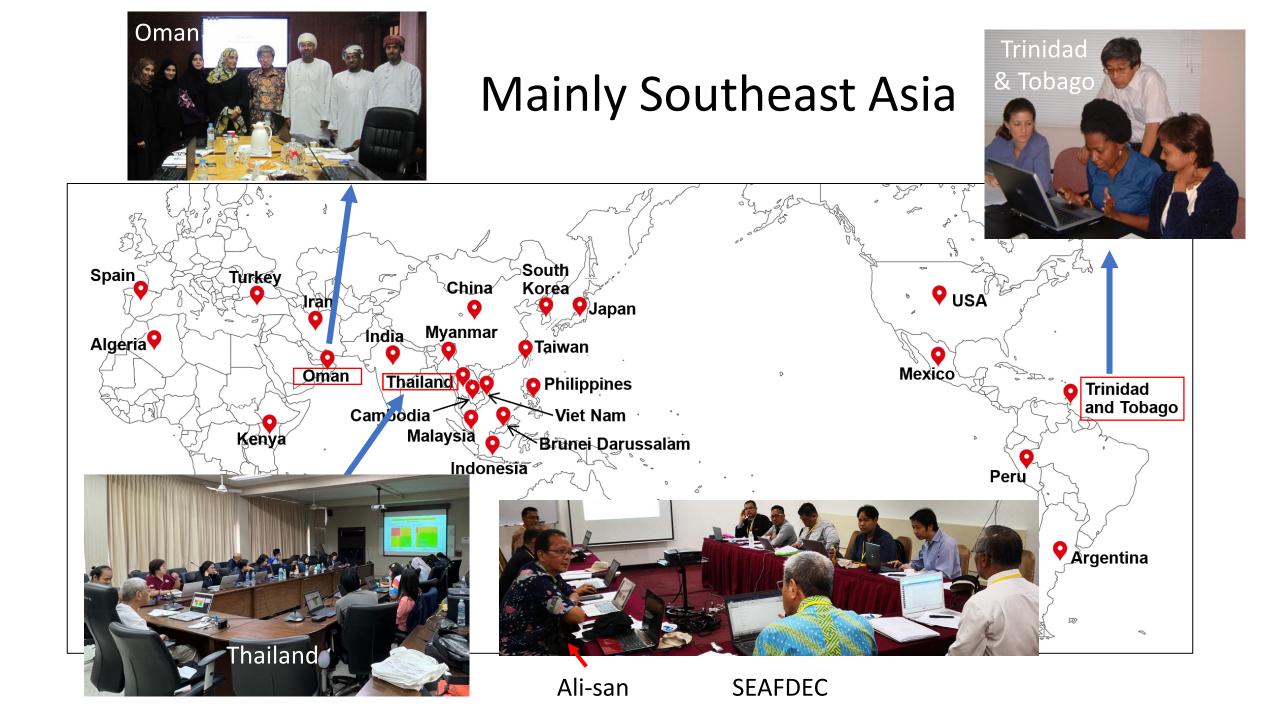
For example ASPIC_Manager include 6 functions (all necessary operations)


Convenient (less errors)

If separated \rightarrow difficult to handle \rightarrow errors

(1) Batch job
earch best parameters & mod
(2) Create results (*.fit) file
(for best parameters)
(3) Graphs (point estimate)
(past trends)
(4) Kobe I
(Kobe plot)
(5) Graphs (uncertainties)
past trends & future projection
(6) Kobe II (strategy matrix)
(TAC decision tool)

_		Level	News		Input information					Current version
		(for beginners)	r (*)	lcon	Catch	CPUE	Biology (**)	Others	Features	year (start year)
CPUE standardization		Basic to	(1) (*) CPUE_Manager	CPUE_Manager					QC, CPUE standardization & weighed Ave of multiple CPUE by catch	ver1.2.0 2024 (2016)
	Production model (PM)	Intermediate	(2) (*) ASPIC_Manager	ASPIC_Manager					Production model incorporating observation (OBS) errors	ver1.1.0 2024 (2016)
Stock assessment (SA) Age structur (integrat		(3) (Just Another Bayesian Biomass Assessment)					Prior information for input parameters	Best Bayesian PM incorporating both OBS & process errors	(To be completed by the end of 2024)	
	Advanced	Advanced	(4) ASPM (Age Structured Production Model)	(for both					In-between PM & age- structured model (selectivity: fixed)	ver4.0 2018 (2010)
			(5) SCAA (Statistical-Catch- At-Age)	ASPM and SCAA)					Catch-At-Age based age-structured model	ver4.0 2022 (2017)
		(6) SCAS (Statistical-Catch- At-Size)	🛁 SCAS					Catch-At-Size based age-structured model	(Under development)	
dec	ision	Basic to Intermediate	(7) (*) Kobe_I_II Manager Kobe I: Kobe plot Kobe II: Strategy matrix (risk assessment)	Kobe_I_II_Manager				<u>Kobe I</u> : SA results (F/Fmsy & B/Bmsy) Kobe II: Pr. violating MSY (F and Biomass) (Risk assessment)	<u>Kobe I:</u> Stock status trajectory plot Kobe II: Evaluation of the optimum catch level (TAC)	ver6.2.1 2024 (2011)
	CPUE stan	CPUE standardization CPUE standardization Production model (PM) Stock assessment (SA) Age structured (integrated)	Types(for beginners)CPUE standardizationBasic to IntermediateProduction model (PM)Production IntermediateStock assessment (SA)Age structured (integrated) modelStock assessment (SA)Age structured (integrated) modelManagement decisionBasic to Intermediate	Types(for beginners)Name (*)CPUE standardizationBasic to Intermediate(1) (*) CPUE_ManagerProduction model (PM)Intermediate(2) (*) ASPIC_ManagerStock assessment (SA)Production model (PM)(3) (Just Another Bayesian Biomass Assessment)Stock assessment (SA)Age structured (integrated) model(3) (Just Another Bayesian Biomass Assessment)Age structured (integrated) model(4) ASPM (Age Structured Production Model)Management decision toolsBasic to Intermediate(5) SCAA (Statistical-Catch- At-Age)Management decision toolsBasic to Intermediate(7) (*) Kobe_1_II Manager Kobe I: Kobe plot Kobe I: Strategy matrix	Types(for beginners)Name (*)IconCPUE standardizationBasic to Intermediate(1) (*) CPUE_ManagerCPUE_ManagerProduction model (PM)Production Intermediate(2) (*) ASPIC_ManagerImagerStock assessment (SA)Production model (PM)(3) (Just Another Bayesian Biomass Assessment)ImagerAge structured (integrated) modelAdvanced(3) (Just Another Bayesian Biomass Assessment)Imager(SA)Age (SA)(4) (Age Structured 	Types (for beginners) Name (*) Icon Catch CPUE standardization Basic to Intermediate (1) (*) CPUE_Manager Image (*) Image (*) Image (*) Production model (PM) Intermediate (2) (*) ASPIC_Manager Image (*) Image (*) Image (*) Stock assessment (SA) Age structured (integrated) model Advanced (3) (Just Another Bayesian Biomass Assessment) Image (*) Image (*) (SA) Age structured (integrated) model Advanced (3) (Just Another Bayesian Biomass Assessment) Image (*) (SA) Advanced (3) (Just Another Bayesian Biomass Assessment) Image (*) (SA) Advanced (5) SCAA (Statistical-Catch- At-Age) (for both ASPM and SCAA) Management decision tools Basic to Intermediate (7) (*) Kobe_1 II Manager Kobe I: Kobe plot Kobe I: Strategy matrix Image (*)	Types (for beginners) Name (*) Icon Catch CPUE CPUE standardization Basic to Intermediate (1) (*) CPUE_Manager Image: CPUE_Manager Image: CPUE_Manaager Image: CPUE_Manager <td< td=""><td>TypesCerter (for beginners)Name (*)IconCatchCPUE Biology (**)CPUE standardizationBasic to Intermediate(1) (*) CPUE_ManagerImage: CPUE_ManagerImage: CPUE_ManagerImage: CPUE_ManagerProduction model (PM)Image: CPUE_ManagerImage: CPUE_ManagerImage: CPUE_ManagerImage: CPUE_ManagerStock assessment (SA)Age structured (Integrated) modelAdvanced(3) (Just Another Bayesian Biomass Assessment)Image: CPUE_ManagerImage: CPUE_Manager(A) (Sa (SA)Advanced(3) (Just Another Bayesian Biomass Assessment)Image: CPUE (Image: CPUE_ManagerImage: CPUE (Image: CPUE_Manager)Image: CPUE (Image: CPUE_Manager)Management decision toolsBasic to Intermediate(0) (Cop Image: CAAS (Cop Image: CPUE (Cop Image: CAAS)Image: CPUE (Image: CPUE (Image: CPUE (Image: CAAS)Image: CPUE (Image: CPUE (Image: CAAS)Management decision toolsBasic to Intermediate(0) (Cop Image: CAAS)Image: CPUE (Image: CAAS)Image: CPUE (Image: CAAS)Management decision toolsBasic to Intermediate(C) (Image: CAAS) (Cop Image: CAAS)Image: CPUE (Image: CAAS)Image: CPUE (Image: CAAS)Management decision toolsBasic to Intermediate(C) (Image: CAAS) (Cop Image: CAAS)Image: CPUE (Image: CAAS)Image: CPUE (Image: CAAS)Management decision toolsBasic to Intermediate(C) (Image: CAAS) (C) (Image: CAAS)Image: CAAS)</td><td>Types Crucing (f) beginners) Name (*) Icon Catch CPUE Biology (**) Others CPUE standardization Basic to Intermediate Intermediate (1) (*) Image: (*)</td></td<> <td>Types Ifor beginners) Name (†) Icon Catch CPUE Biology (**) Others Features CPUE standardization model Bosic to intermediate Bosic to intermediate (1) (*) CPUE_Manager Image: CPUE (**) Image: CPUE (**) Others QC, CPUE standardization & weighed Ave of multiple CPUE by catch Production model (PM) Image: CPUE (**) Image: CPUE (**) Image: CPUE (**) Image: CPUE (**) Production (OBS) errors Stock assessment (SA) Age structured (integrated) model Image: CPUE (**) Image: CPUE (**) Image: CPUE (**) Image: CPUE (**) Production (OBS) errors Stock assessment (SA) Age structured (integrated) model (3) (Just Another Bayesian Biomass Assessment) Image: CPUE (*) Im</td>	TypesCerter (for beginners)Name (*)IconCatchCPUE Biology (**)CPUE standardizationBasic to Intermediate(1) (*) CPUE_ManagerImage: CPUE_ManagerImage: CPUE_ManagerImage: CPUE_ManagerProduction model (PM)Image: CPUE_ManagerImage: CPUE_ManagerImage: CPUE_ManagerImage: CPUE_ManagerStock assessment (SA)Age structured (Integrated) modelAdvanced(3) (Just Another Bayesian Biomass Assessment)Image: CPUE_ManagerImage: CPUE_Manager(A) (Sa (SA)Advanced(3) (Just Another Bayesian Biomass Assessment)Image: CPUE (Image: CPUE_ManagerImage: CPUE (Image: CPUE_Manager)Image: CPUE (Image: CPUE_Manager)Management decision toolsBasic to Intermediate(0) (Cop Image: CAAS (Cop Image: CPUE (Cop Image: CAAS)Image: CPUE (Image: CPUE (Image: CPUE (Image: CAAS)Image: CPUE (Image: CPUE (Image: CAAS)Management decision toolsBasic to Intermediate(0) (Cop Image: CAAS)Image: CPUE (Image: CAAS)Image: CPUE (Image: CAAS)Management decision toolsBasic to Intermediate(C) (Image: CAAS) (Cop Image: CAAS)Image: CPUE (Image: CAAS)Image: CPUE (Image: CAAS)Management decision toolsBasic to Intermediate(C) (Image: CAAS) (Cop Image: CAAS)Image: CPUE (Image: CAAS)Image: CPUE (Image: CAAS)Management decision toolsBasic to Intermediate(C) (Image: CAAS) (C) (Image: CAAS)Image: CAAS)	Types Crucing (f) beginners) Name (*) Icon Catch CPUE Biology (**) Others CPUE standardization Basic to Intermediate Intermediate (1) (*) Image: (*)	Types Ifor beginners) Name (†) Icon Catch CPUE Biology (**) Others Features CPUE standardization model Bosic to intermediate Bosic to intermediate (1) (*) CPUE_Manager Image: CPUE (**) Image: CPUE (**) Others QC, CPUE standardization & weighed Ave of multiple CPUE by catch Production model (PM) Image: CPUE (**) Image: CPUE (**) Image: CPUE (**) Image: CPUE (**) Production (OBS) errors Stock assessment (SA) Age structured (integrated) model Image: CPUE (**) Image: CPUE (**) Image: CPUE (**) Image: CPUE (**) Production (OBS) errors Stock assessment (SA) Age structured (integrated) model (3) (Just Another Bayesian Biomass Assessment) Image: CPUE (*) Im


(**) Size, LW relation, Selectivity, M (natural mortality), Growth, Maturity-At-Age, Spawner-Recruit relation, Life span (Max. age), Fecundity, and others depending on the model.

USERS: 104 USERS (26 COUNTRIES)

Algeria, Argentina, Brunei Darussalam^{*}, Cambodia^{*}, China, Indonesia^{*}, India, Iran, Japan^{*}, Rep. Korea, Kenya, Malaysia^{*}, Mexico, Myanmar^{*}, Oman, Peru, Philippines^{*}, Spain, Sri Lanka, Thailand^{*}, Trinidad and Tobago, USA, Viet Nam^{*}, Taiwan and Turkey.

(*) Southeast Asian Fisheries Development Center (SEAFDEC) member countries

TRAINING

- All software : <u>FREE</u> of charge for anyone to utilize.
- If you want to use the software, please contact us.
- We will provide the <u>on-site training</u>.
- We will release software <u>after</u> we make sure that users understand the software (theory & input/output) and can handle software <u>properly</u>.

Our responsibility

UTILIZATION AND COPYRIGHT(1/2)

- Software has <u>copyright</u>. If users want to use,
 → Users need to obtain <u>permission</u> from us.
- It is requested that users should work with us.
 → [MENU] needs to make sure all processes are OK.

This is because if users use by themselves, there will be <u>misuse</u> of software & data, which were happened in the past.
 Danger (WRONG advice Mis managements)

UTILIZATION AND COPYRIGHT (2/2)

Thus to avoid such situation and to get reliable results & provide <u>plausible</u> management advices, users need to work with us. We will discuss this in Part 2 (Training & Collaborative works)

Our ultimate goal

Stock assessments (SA) <u>for ALL</u> No more

struggling with SA

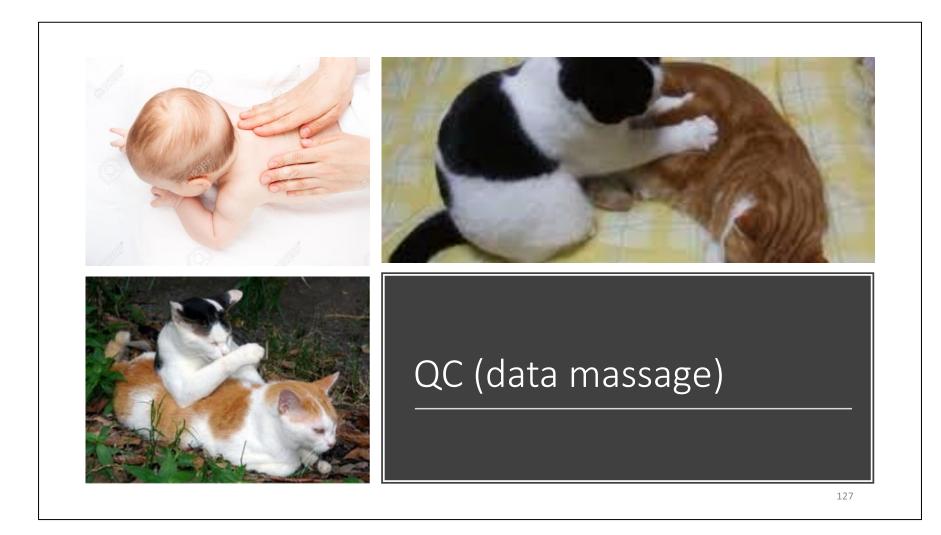
- Only for SA experts (5~10%) (RFMO)

Contents (Part 1)

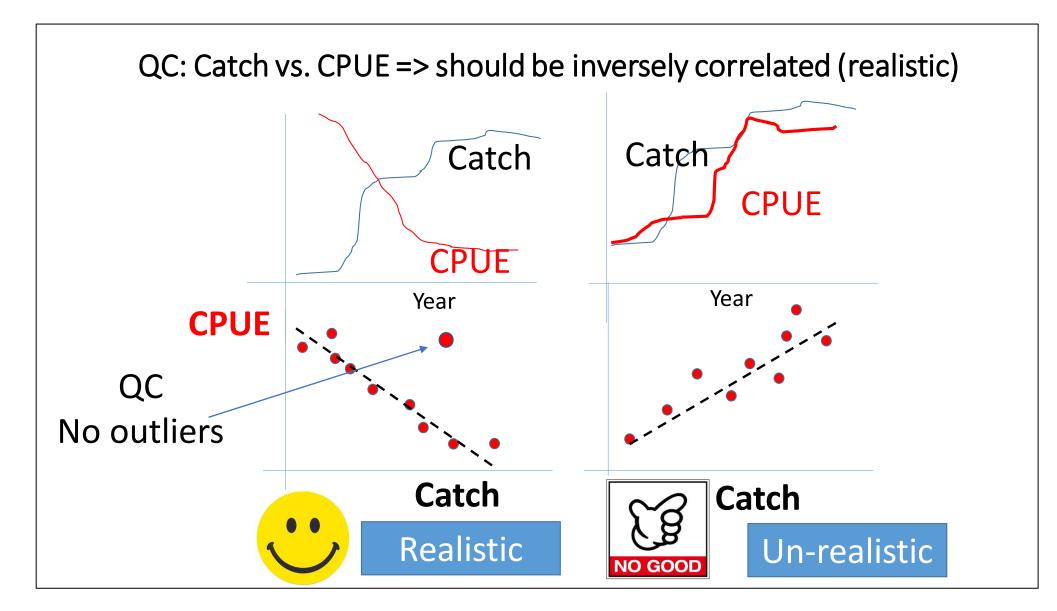
- (1) Background & Objectives
- (2) Outline
- (3) Menu-driven software
 - CPUE standardization
 - Stock and Risk assessment
 - Review
 - Production model (ASPIC and JABBA)
 - Age-Structured Models
 - Management decision making tool (Kobe I+II)
- (4) Summary

CPUE_Manager(ver1.2.0)(2024)

CPUE_Manager(ver1.2.0)(2024)


(1) Quality Control (CPUE vs. catch) х

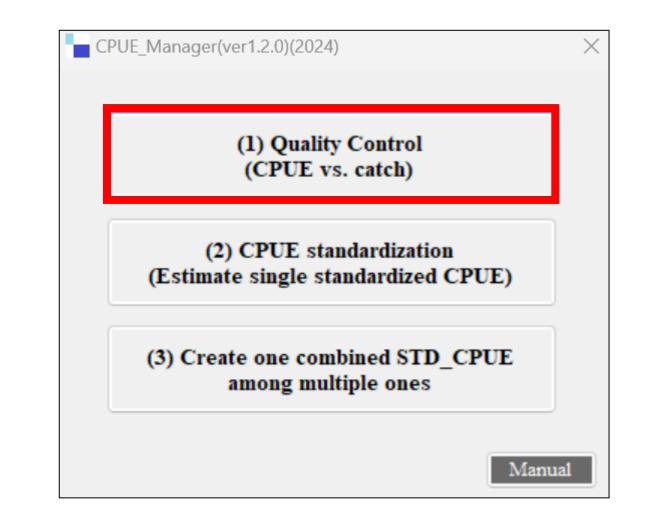
Manual

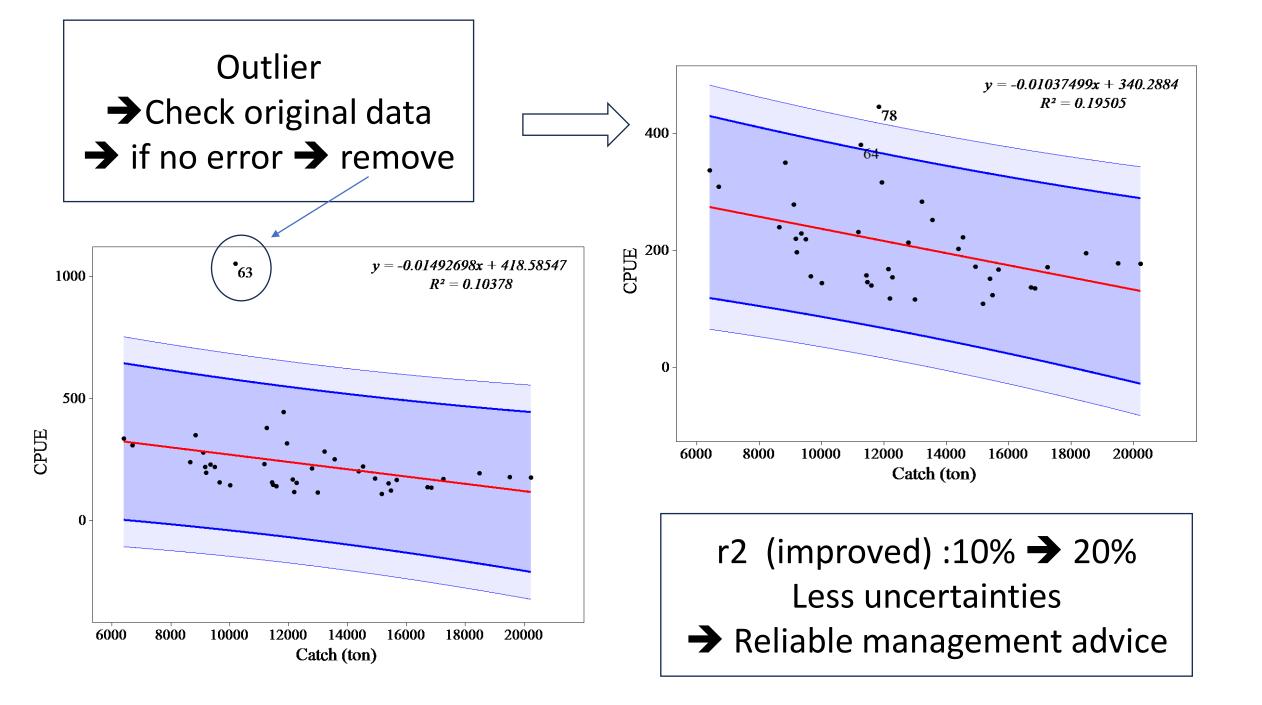

(2) CPUE standardization (Estimate single standardized CPUE)

(3) Create one combined STD_CPUE among multiple ones

[1st menu] Quality Control (QC)

QC for CPUE vs Catch




[1st menu] Data Quality Control (QC)

To check relations between CPUE vs. Catch if there are....

(a) Negative correlations(b) Outliers

important for SA

Outliers

 <u>Very Critical</u> if sample size is <u>small</u> before removal → <u>positive</u> relation after removal → normal (<u>negative</u>) (good for SA)

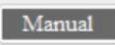
• <u>Less</u> critical if sample size are <u>large</u>

<u>Other</u> essential data Quality Control (QC) <u>by users (not by software)</u>

• Check outliers for each variable

→ catch, effort, CPUE, depth and others) (entry errors)

- Check ranges (e.g. if 1<=month<=12)
- Spatial check by mapping (e.g. if catch/effort is not from land)
- Check typos for names (e.g., boat, gear)
- Other ad hoc QC


[2nd menu] CPUE standardization

CPUE_Manager(ver1.2.0)(2024)

(1) Quality Control (CPUE vs. catch)

(2) CPUE standardization (Estimate single standardized CPUE)

(3) Create one combined STD_CPUE among multiple ones

Why we need CPUE standardization?

• Nominal (raw) CPUE

→ Bias→ not real abundance index → not good for SA

Major bias by
 → Y(Year), S(Season) & A(Area)

<u>Other bias by → target, ENV, gear, vessel, skipper etc</u>.

→ Could be explained by Y+S+A because biases are reflected by time & area

CPUE standardization by year

To be used as one of most important inputs for <u>stock assessment</u> as abundance index (year based)

CPUE standardization (Method)

Policy \rightarrow for non technical users \rightarrow Simple

GLM → standard.

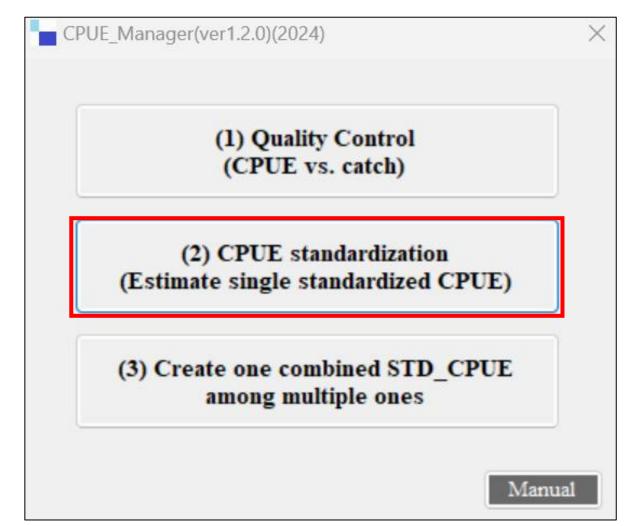
No complicated ones (VAST, regression tree, NN etc.)

Covariates (factors affecting nominal CPUE)

- → Minimum (year, season, area)
- ➔ Data limited (developing countries)

Implementing CPUE standardization

This software apply 2 models for CPUE standardization Depending upon 0 catch (CPUE) rate.


0 catch rate (%)	Model	Short name
0% \sim 30%	Log normal GLM	Log normal model
30% \sim	Zero (0) inflated Delta 2 steps log normal GLM	Delta model

Software <u>automatically</u> provides 0% rate & assign the proper model

Implementing CPUE standardization

Log normal GLM (0 catch rate < 30%)

Implementing CPUE standardization log normal GLM

(Simple) Input data : Example Year (1986-2006)(21), Season(4), Area(7) and Nominal CPUE

YR	Q	area	KAW CPUE (KG/HAUL)
2006	1	6	26.88
2006	1	6	0.00
2006	1	6	0.00
2006	2	6	163.35
2006	2	6	314.64
2006	2	6	37.69
2006	3	6	237.87
2006	3	6	429.18
2006	3	6	18.69
2006	4	6	29.62
2007	1	6	0.00
2007	1	6	0.00

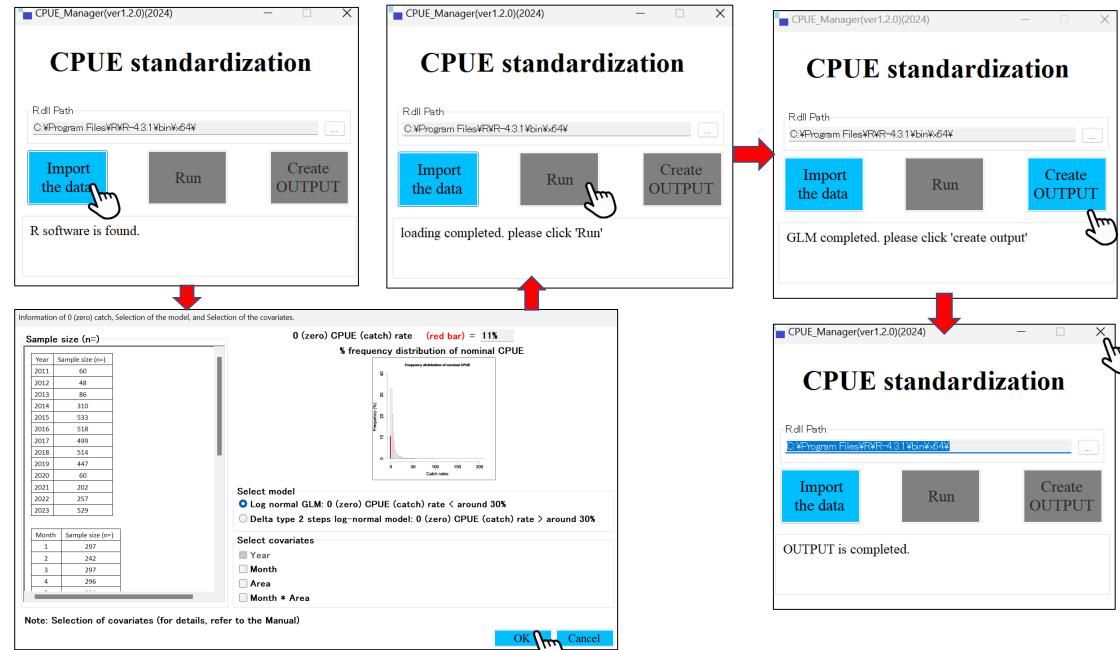
Manual

CPUE_Manager(ver1.2.0)(2024)

		CPUE_Manager(ver1.2.0)(2024) — 🗆 🗙
_Manager(ver1.2.0)(2024)	×	CPUE standardization
(1) Quality Control (CPUE vs. catch)		R.dll Path C:¥Program Files¥R¥R-4.3.1¥bin¥x64¥
(2) CPUE standardization (Estimate single standardized CPUE)	- Chrry	R software is found.
(3) Create one combined STD_CPUE among multiple ones		

50

Implementing CPUE standardization (log normal GLM): 1st window


Information of 0 (zero) catch, Selection of the model, and Selection of the covariates.

Year	Sample size (n=)	
2011	60	
2012	48	
2013	86	
2014	310	
2015	533	
2016	518	
2017	499	
2018	514	
2019	447	
2020	60	
2021	202	
2022	257	
2023	529	
Month	n Sample size (n=)	
1	297	-
2	242	-
3	297	7
4	296	-

0 (zero) CPUE (catch) rate (red bar) = 11%% frequency distribution of nominal CPUE Frequency distribution of nominal CPUE 4 8 ency (%) 20 9 0 0 50 100 150 200 Catch rates Select model Log normal GLM: 0 (zero) CPUE (catch) rate < around 30%</p> Delta type 2 steps log-normal model: 0 (zero) CPUE (catch) rate > around 30% Select covariates Year Month Area Month * Area

Note: Selection of covariates (for details, refer to the Manual)

Implementing CPUE standardization(log normal GLM) : Steps

3 Outputs

- (1) <u>Sample size</u> (excel)
- (2) <u>Numerical</u> results (excel)
- (3) <u>Summary</u> of results (word) → <u>Your report is ready</u>!

CPUE frequency distribution (0 CPUE)

ANOVA

Graphs

Diagnosis (residual analyses + QQ plot) (model evaluation)

(1) Sample size (excel)

	Α	В	С	D	E		
	Area	Sample size (n=)					
	NTS	3,291					
	STS	772					
<	$\langle \rangle$	Year Month	Area	Month x A	Area		

(1) Sample size (Covariates)

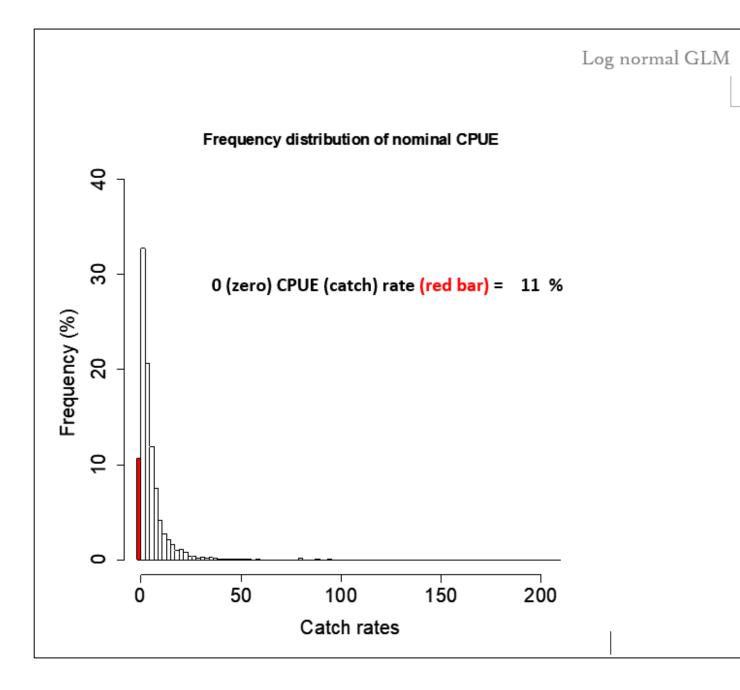
Result(sample size)(Sample)(GLM)

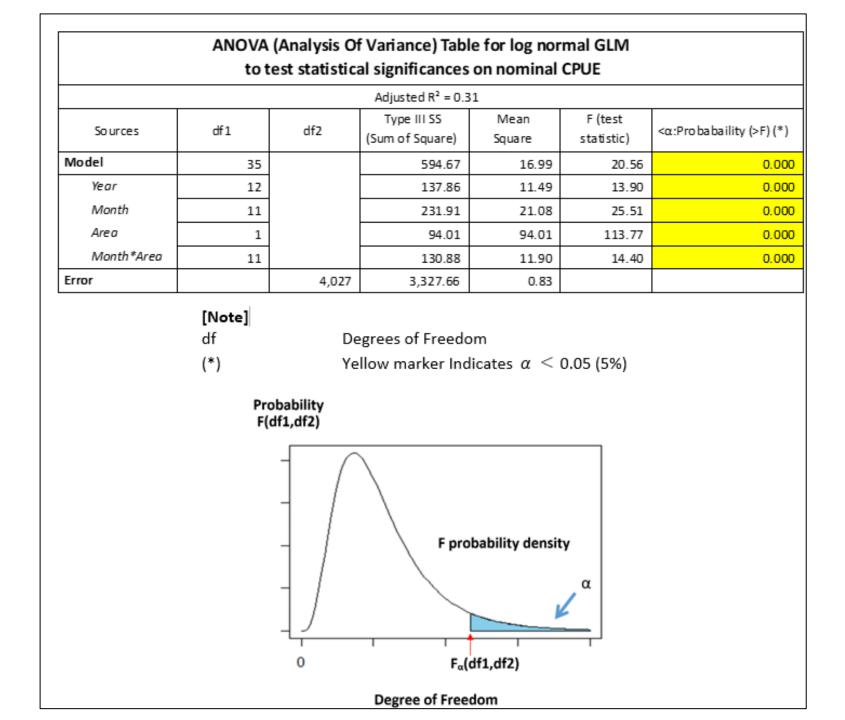
					٨	P	6	D
	А	В	С		А	B	С	D
1	Year	Sample size (n=)		1	Month	Sample size (n=)		
2	2011	60		2	1	297		
3	2012	48		3	2	242		
4	2013	86		4	3	297		
5	2014	310		5	4	296		
6	2014	533		6	5	294		
7	2015	533		7	6	266		
				8	7	313		
8	2017	499		9	8	417		
9	2018	514		10	9	417		
10	2019	447						
11	2020	60		11	10	389		
12	2021	202		12	11	475		
13	2022	257		13	12	364		
14	2023	529		14				
15				15				
16				16				
17				17				
<	~ >	Year Month	Area	10	ith X Area	Year <u>Month</u> Are	ea Mo	nth x Area

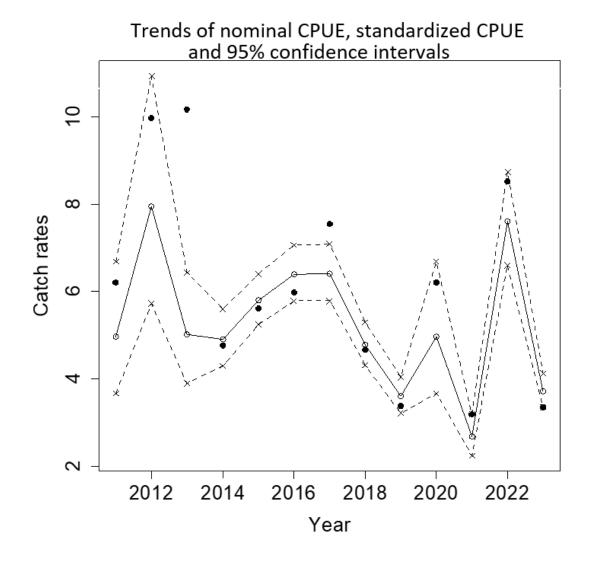
	А	В	С	D	Е
1	Month*Area	Sample	size(n=)		
2	Wonth Area	Ar	ea		
3	Month	NTS	STS		
4	1	244	53		
5	2	186	56		
6	3	223	74		
7	4	212	84		
8	5	213	81		
9	6	201	65		
10	7	252	61		
11	8	327	90		
12	9	344	69		
13	10	341	48		
14	11	429	46		
15	12	319	45		
16					
<	> Year	Month	Area	Month x	Area

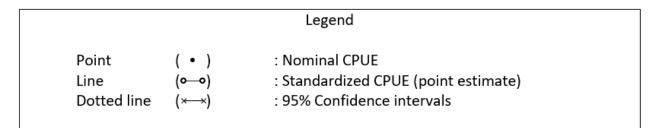
(2) Numerical results (excel)

(2) Standardized CPUE with its 95% CI(Confidence Interval) and nominal CPUE

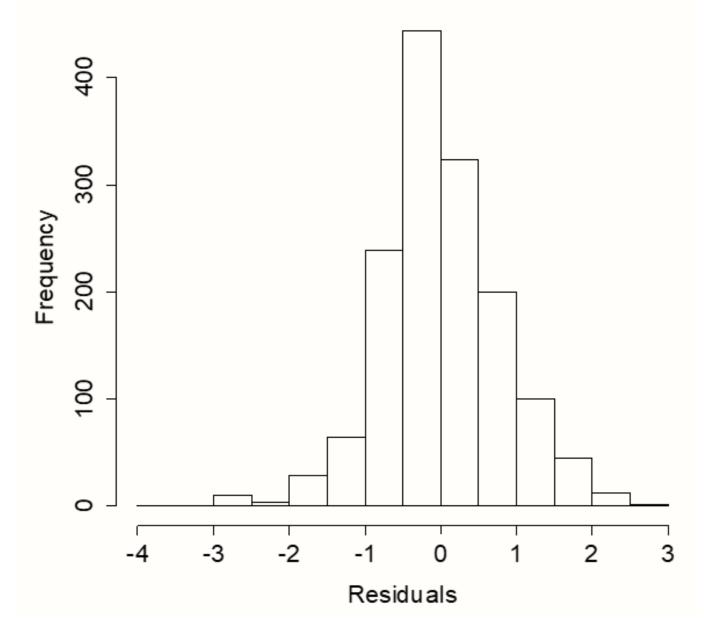

> numerical results 2 sheet (excel)

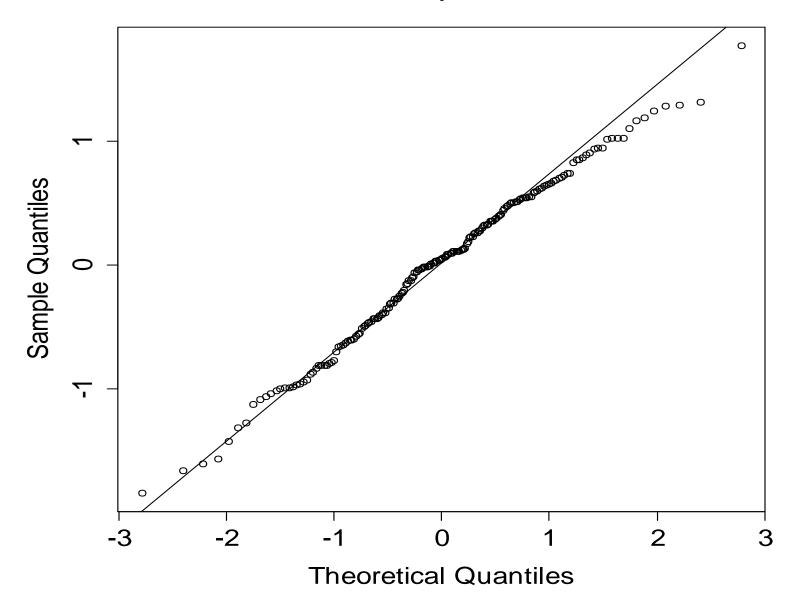

		А	В	С	D	E
			Observed	Estimated	Lower boundary of	Upper boundary of
	1		(nominal) CPUE	(standardized) CPUE	95% CI (2.5%)	95% CI (97.5%)
	2	2011	6.20	4.97	3.66	6.69
	3	2012	9.98	7.95	5.73	10.95
	4	2013	10.18	5.02	3.90	6.44
	5	2014	4.77	4.91	4.30	5.60
Original	6	2015	5.61	5.80	5.25	6.40
Original scale	7	2016	5.98	6.40	5.79	7.07
scale	8	2017	7.55	6.41	5.78	7.09
	9	2018	4.66	4.78	4.31	5.30
	10	2019	3.37	3.61	3.21	4.04
	11	2020	6.20	4.97	3.66	6.69
	12	2021	3.18	2.68	2.23	3.19
	13	2022	8.52	7.61	6.61	8.75
	14	2023	3.35	3.72	3.35	4.12
	15					
	<	< >	Original scale	Scaled CPUE (Ave=1)	+	


		А	В	С	D	E
			Observed	Estimated	Lower boundary of	Upper boundary of
	1		(nominal) CPUE	(standardized) CPUE	95% CI (2.5%)	95% CI (97.5%)
	2	2011	1.01	0.94	0.82	1.06
	3	2012	1.63	1.50	1.29	1.73
	4	2013	1.66	0.95	0.88	1.02
	5	2014	0.78	0.93	0.97	0.88
Caslad	6	2015	0.92	1.10	1.18	1.01
Scaled	7	2016	0.98	1.21	1.30	1.12
20	8	2017	1.23	1.21	1.30	1.12
as	9	2018	0.76	0.90	0.97	0.84
Ave=1	10	2019	0.55	0.68	0.72	0.64
	11	2020	1.01	0.94	0.82	1.06
	12	2021	0.52	0.51	0.50	0.50
	13	2022	1.39	1.44	1.49	1.38
	14	2023	0.55	0.70	0.75	0.65
	15	Average	1	1	1	1
	16					
	<	>	Original scale Scal	ed CPUE (Ave=1) +		:


Result(data)(Sample)(GLM)

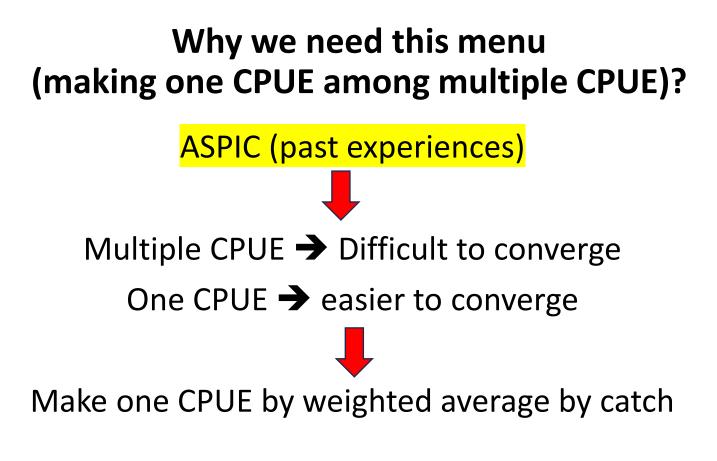
(3) Summary of results (word)





Histgram of residuals (log normal GLM)

QQplot


Implementing CPUE standardization (Delta model)

Zero inflated Delta 2 steps log normal GLM

bit different & complicated from log normal → to be explained (training session)

[3rd menu] Creating one common standardized CPUE

CPUE_Manager(ver1.2.0)(2024)	\times
(1) Quality Control (CPUE vs. catch)	
(2) CPUE standardization (Estimate single standardized CPUE)	
(3) Create one combined STD_CPUE among multiple ones	
Manua	1

JABBA (advance) 🗲 no problem

Contents (Part 1)

- (1) Background & Objectives
- (2) Outline
- (3) Menu-driven software
 - CPUE standardization
 - Stock and Risk assessment
 - <mark>Review</mark>
 - Production model (ASPIC and JABBA)
 - Age-Structured Models
 - Management decision making tool (Kobe I+II)
- (4) Summary

Review: Stock assessments

Review of stock assessment (SA)

Important to understand the global SA models

Understand which model is good for your data (maybe one model or more)

Most important point → Try a <u>few</u> possible models If results are same → Confident → Good advise (management)

If NOT → data problem → check your data
→ You might use one good (fitness) model.

How many SA models ? More than 50 (IOTC, 2015) (a list and not classified)

Method	Data Requirements		Reference	Management Advice	Pros	Cons	
	Biology	Fishery	Points				
PSA	Qualitative	Qualitative	No	Qualitative	Easy to use if LH parameters available	Difficult to relate to current abundances and fishing mortality.	
Demographic Models/Elasticity Analysis	Age & growth, Fecundity, Natural Mortality	Several fishery characteristics	No	Mostly qualitative (change of gear) and F	Easy to use if LH Parameters available. Can provide guidance on gear usage/ selectivity	Must assume that LH parameters are correct, but uncertainties can be introduced. Difficult to relate to current abundances and fishing mortality.	
Catch free LH Based	M, growth curve parameters, and Age at full Maturity or Max Age	Selectivity	Yes (F _{MSY})	F _{MSY}	Easy to get LH parameters if available. Zhou et. al. (2011) provides equations that are relevant to species. Could run a meta-analysis and run as well using a Bayesian Hierarchical Model Approach. Provides a Target F.	Guidelines provided for Fishing Mortality, but no specifics on current status. No idea what current Biomass and F are. However some guidelines could be provided based on theoretical carrying capacity, current depletion levels, and whether current take are meeting or exceeding targets.	
Catch free CPUE Based	M, growth curve parameters, and Age at full Maturity or Max Age & recruitment	Selectivity and CPUE Series	Yes (F _{MSY} & B _{MSY})	F _{MSY} & B _{MSY}	Easy to parameterize with LH data. Estimate recruitment, F and selectivity to tune to the CPUE series. Provides target F, Yield levels and where we are with regards to these rates. Provides target B as well and where we are with regards to that.	LH based assumptions could be misleading. CPUE series may not be representative of abundance series if from a limited fleet and area. Catch at size should be estimated from the viewpoint of the operational patterns	
Catch Based SRA	r & K	Catch series	Yes (F _{MSY} & B _{MSY})	F _{MSY} & B _{MSY}	Set of data that currently exist (but may not be too good). Tried and tested approach in ICES, Walters, etc. Easy to run, provides Yield targets and FMSY & BMSY	assumptions of depletion range in	
Surplus Production (Bayesian or Otherwise)	r & K	Catch series & CPUE series	Yes (F _{MSY} & B _{MSY})	F _{MSY} & B _{MSY}	Traditional approaches. Used extensively in literature. Provides yield targets and FMSY and BMSY	Length of time-series and uncertainty in catch series and CPUE series can bias results. Models may have problems converging to a solution if there is no contrasting information.	
Integrated assessments	Recruitment, M by age, growth paramters, maturation schedule, fecundity, recruitment	Catch series, Length based samples, CPUE data (and or have tagging data), fishery selectivity	Yes (F _{MSY} & B _{MSY})	F _{MSY} & B _{MSY}	Most robust approach. Incorporates all information in a dynamic model. Provides most representative yield targets and FMSY and BMSY	Highly data dependent. Models can have problems converging. Learning curve steep. 70	

These models can be classified into 3 types

3 types of SA models (Nishida, 2024) (TYPE3 → most important)

	Data type	Information	Data	Reference Point	Models & Application	Implementation
			period	(RP) (MSY,	(examples)	(R, own code, package)
				Fmsy, Tbmsy,		(example)
				target & limit		
				RP)		
TYPE	Qualitative	Parameters			 ERA (Ecosystem Risk Assessment) 	✓ R
1					 PSA (Productivity Susceptibility 	✓ Package
					Analysis)	
TYPE	Quantitative	✓ Real data	Short	Temporal	 Length based models 	✓ R (Y/R, S/R)
2		• Real data	term	&	(ELEFAN, FISAT, Y/R, S/R, LBSPR,	✓ Packages (FAO)
		✓ Parameters	(a few	Subjective	Thompson & Bell)	
			years)	<u>(snap shot)</u>	 SRA (Stock Reduction Analysis) 	
		✓ Priors for			(Longer term catch also can be	
		Bayesian			applied)	
TYPE		approach	Long	Realistic &	 Production models (ASPIC & JABBA) 	✓ Own codes (SS)
3			term	Objective	 Age (size) structured model 	🗸 R (JABBA)
			<mark>(> 10</mark>	(important for	(VPA, ASPM, SCAA, SCAS)	✓ Package (MENU:
			<mark>years)</mark>	management)	 Integrated models (SS, CASAL) 	ASPIC_Manager)

Type 3 (important) for robust assessments (long term data) (not like snap-shop TYPE 2 SA)

			Data and parameters											
Models		Example	Stock structure	Catch	CPUE	size / age	M (natural mortality)	LW relation	Growth	Maturity + fecundity	Space & movement			
Data limit approach		SRA (Catch only)												
Production model		ASPIC												
From	uction model	JABBA												
	Simple model (no CPUE)	Cohort analysis												
Age / size structured model	Simple integrated model	ASPM												
	Integrated model	SCAA, SCAS, SS3, CASAL									SS3			

Based on the summary

SEAFDEC training We considered which models should be used for menu-driven software

We consider... Simpler (easier) model → for beginners Data limited → for developing countries Production Model (Catch and CPUE)

Evolution of PM (Production Model)

			Equilibrium	Error	type			
Evolution	Туре	Primnary author	Condition (EC) (death=increase) (un-reaistic)	Observation (data) error	Process (model) error	Bayesian (better) Approach	Comments	
old	Original PM	Shaeffer(1954), PT(1969) & Fox (1970)	YES				Classical (Not recommended to use due to EC)	
	ASPIC (Ver5.05)	Prager (2004)					Basic, standard & commonly used	
	ASPIC (ver7.5)	Prager (2017)	NO				among RFMOs & fishing countries	
new	JABBA (Just Another Bayesian Biomass Assessment)	Winker (2018)					Best but high standard (slowly expanding) Recommended	

In 2013-15, ASPIC is available but JABBA (2018) is not available

We have been developing and improving ASPIC to now (2024) For training & joint works (SEAFDEC + many fishing countries (world wide)

(1) Batch job search best parameters &	model)
(2) Create results (*.fit) (for best parameters	
(3) Graphs (point estim (past trends)	ate)
(4) Kobe I (Kobe plot)	
(5) Graphs (uncertaint (past trends & future proj	
(6) Kobe II (strategy ma (TAC decision tool)	

As JABBA is the best PM → We started to develop (2023)

JABBA: Just Another Bayesian Biomass Assessment

Henning Winker^{a,b,*}, Felipe Carvalho^c, Maia Kapur^{c,d}

^a Department of Agriculture, Forestry and Fisheries, Private Bag X2, Vlaeberg, 8018, South Africa

^b Centre for Statistics in Ecology, Environment and Conservation (SEEC), Department of Statistical Sciences, University of Cape Town, South Africa

^c NOAA Pacific Islands Fisheries Science Center, 1845 Wasp Boulevard, Building 176, Honolulu, HI, 96818, United States

^d Joint Institute for Marine and Atmospheric Research, University of Hawaii, 1845 Wasp Boulevard, Building 176, Honolulu, HI, 96818, United States

Menu-driven JABBA will be ready (2024)

Next year (2025) \rightarrow we can offer training

How about Age-Structured Model? We recommend <u>ASPM</u> (simpler than others)

			Data and parameters											
Models		Example	Stock structure	Catch	CPUE	size / age	M (natural mortality)	LW relation	Growth	Maturity + fecundity	Space & movement			
Data I	Data limit approach													
Prod	Production model													
From														
	Simple model (no CPUE)	Cohort analysis												
Age / size structured model	Simple integrated model	ASPM												
	Integrated model	SCAA, SCAS, SS3, CASAL									SS3			

Why we don't select data poor method (<u>snap shot approach</u>)? TYPE 2

	Data type	Information Data		Reference Point	Models & Application	Implementation
			period	(RP) (MSY,	(examples)	(R, own code, package)
				Fmsy, Tbmsy,		(example)
				target & limit		
				RP)		
TYPE	Qualitative	Parameters			 ERA (Ecosystem Risk Assessment) 	✓ R
1					 PSA (Productivity Susceptibility 	✓ Package
					Analysis)	
TYPE	Quantitative	✓ Real data	Short	Temporal	 Length based models 	✓ R (Y/R, S/R)
2		• Real data	term	&	(ELEFAN, FISAT, Y/R, S/R, LBSPR,	✓ Packages (FAO)
		✓ Parameters	(a few	Subjective	Thompson & Bell)	
			years)	<u>(snap shot)</u>	 SRA (Stock Reduction Analysis) 	
		✓ Priors for			(Longer term catch also can be	
		Bayesian			applied)	
TYPE		approach	Long	Realistic &	 Production models (ASPIC & JABBA) 	✓ Own codes (SS)
3			term	Objective	 Age (size) structured model 	✓ R (JABBA)
			<mark>(> 10</mark>	(important for	(VPA, ASPM, SCAA, SCAS)	✓ Package (MENU:
			<mark>years)</mark>	management)	 Integrated models (SS, CASAL) 	ASPIC_Manager)

Why we don't cover data poor method (<u>snap shot approach</u>)? TYPE 2

Because \rightarrow many software & training (FAO, SEAFDEC & others)

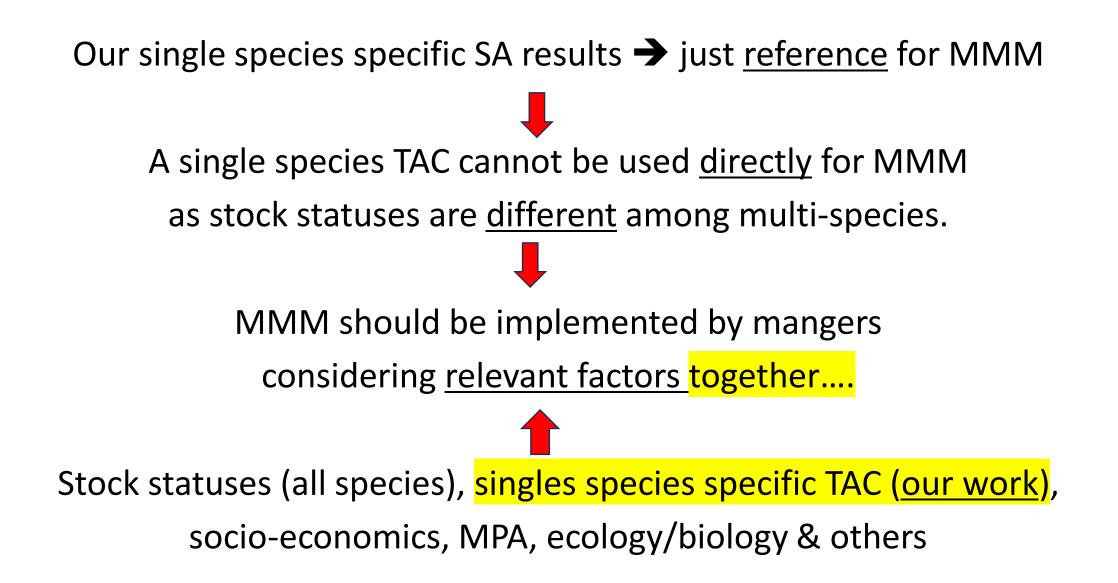
(1) Length based method

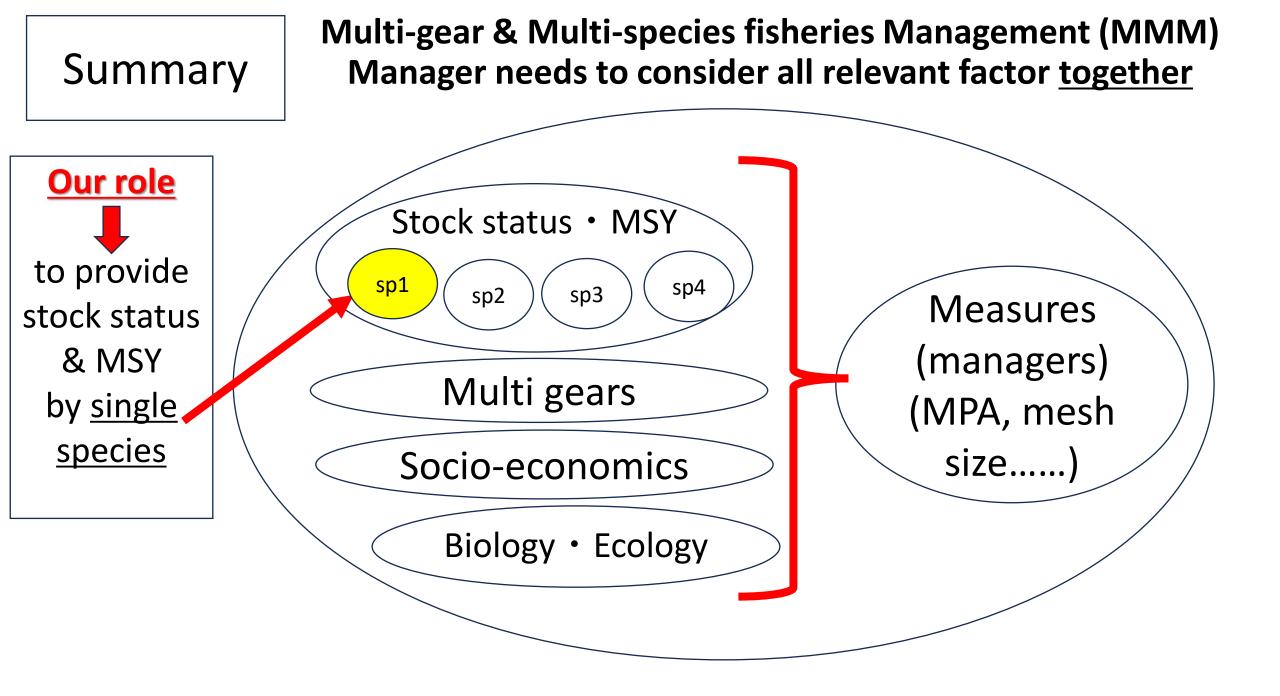
ELEFAN, FiSAT, Y/R, S/R, LBSPR, Thompson & Bell, others

(2) SRA (Catch only method)

Thus [MENU] <u>concentrate</u> traditional stock assessments TYPE 3

as NO users friendly software & NO trainings


→ Thus [MENU] develops Menu-driven software


Lastly Very important issue

Developing countries

➔ Need <u>Multi-gear & Multi-species</u> fisheries Management (MMM)

Our stock assessment → single species How dose it help MMM?

Contents

- (1) Background
- (2) Outline
- (3) Menu-driven software
 - CPUE standardization
 - Stock and Risk assessment
 - Review
 - Production model (ASPIC and JABBA)
 - Age structured production model (ASPM)
 - Management decision making tool (Kobe I+II)

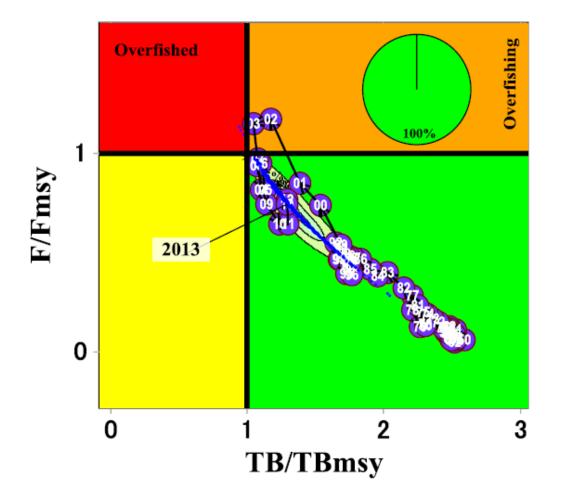
(4) Summary

Review: Risk assessment

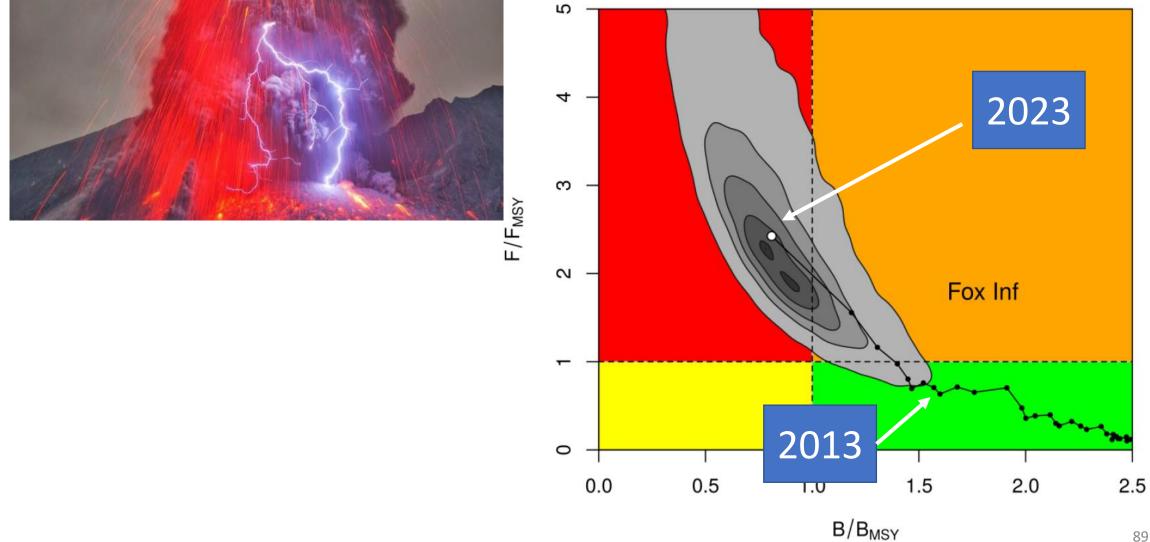
Why we need to do Risk assessment? Stock assessments are not enough?

Stock assessments are enough to the some extent

We know the stock status

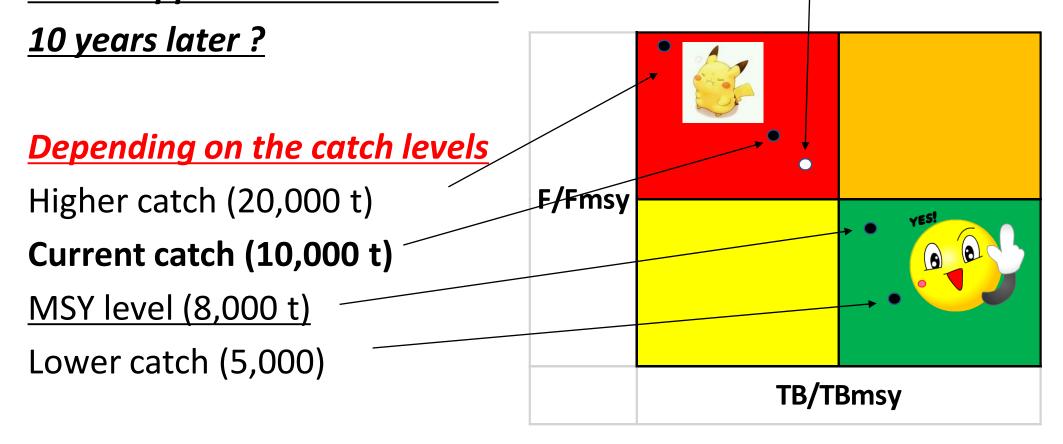

We can set up TAC (e.g. MSY)

Maybe that is enough and OK??


Not OK... → we need Risk assessment.. Why?

We know the current stock status \rightarrow green (happy) zone \odot

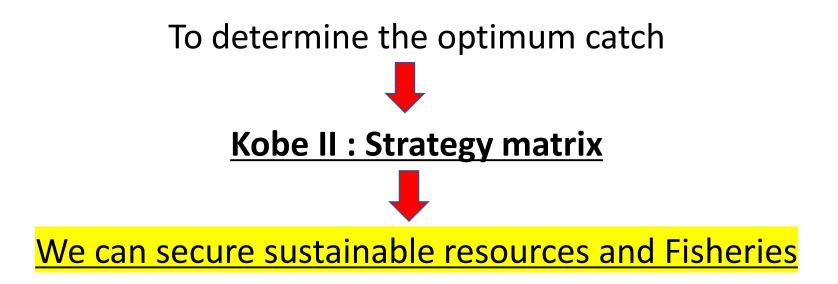
So, we are OK, finish our work and we can relax ...



But danger is... if the current catch level were continued... then we may end up the **RED ZONE in 10 years** !

How do we know the future stock status?

For example stock assessments \rightarrow current stock status (red zone) what happens the stock status

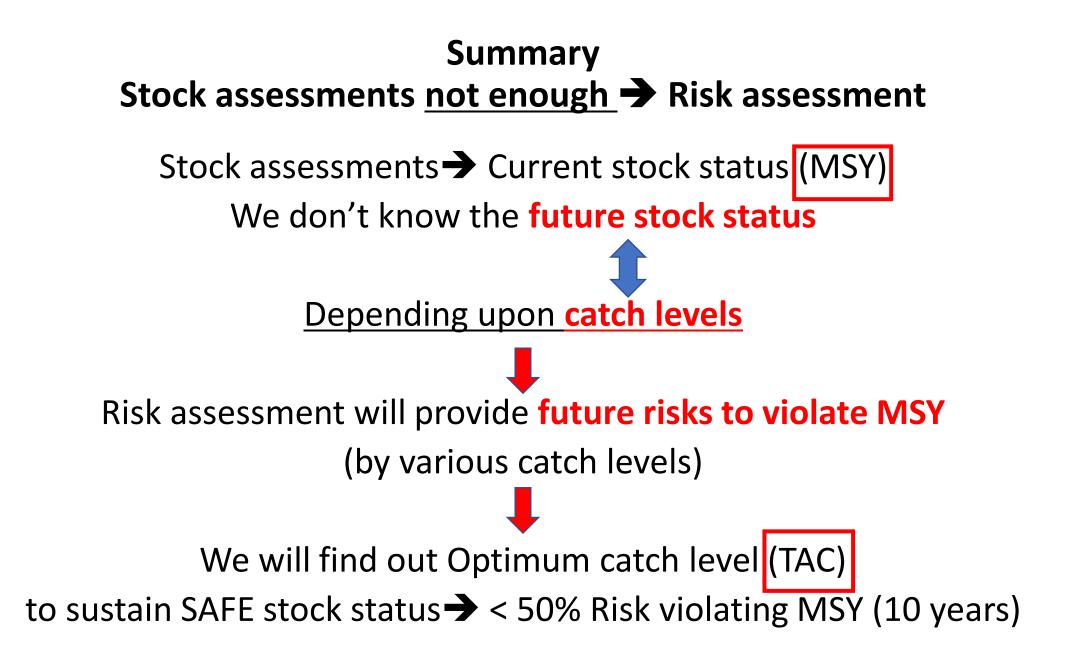

Simply if catch level is higher more RISK to violate MSY levels

And vice versa

lower catch → less risk to violate MSY level

→ We need to select OPTIMUM CATCH level
 for sustainable MSY levels (TB+F) (future)

For this purpose, we need to do Risk assessment (TB and F)


Risk Matrix \rightarrow Risk Probability (%) to violate F(MSY) in the future Example (IOTC) \rightarrow 10 years (Pr < 50%) \rightarrow TAC: > 10% reduction

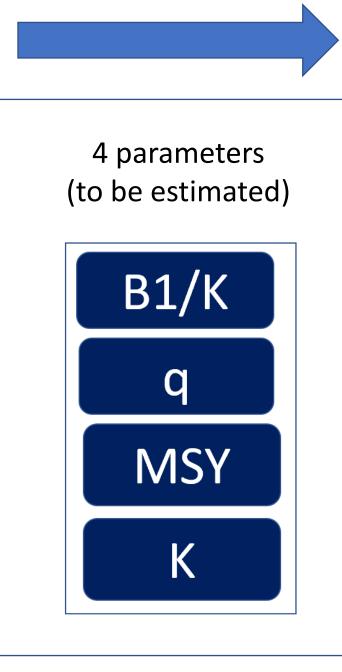
		Color legend										
	Risk levels		els Low risk		Medium Iow risk		Medium high risk		High risk			
	Probably		0 - 25%		25 - 50%		50 - 75%		75 - 100%			
	%	Catch (tons)	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
	200%	40,533	42%	99%	100%	100%	100%	100%	100%	100%	100%	100%
	150%	33,778	42%	96%	99%	100%	100%	100%	100%	100%	100%	100%
	100%	27,022	42%	89%	96%	99%	100%	100%	100%	100%	100%	100%
% Increased from the	80%	24,320	42%	85%	93%	97%	99%	100%	100%	100%	100%	100%
current catch level	60%	21,618	42%	79%	88%	93%	96%	98%	99%	100%	100%	100%
	40%	18,915	42%	71%	80%	87%	91%	94%	96%	97%	98%	99%
	30%	17,564	42%	65%	75%	82%	87%	91%	93%	95%	96%	97%
	20%	16,213	42%	60%	69%	76%	81%	86%	89%	91%	92%	93%
	10%	14,862	42%	54%	60%	68%	73%	77%	81%	84%	86%	88%
* Current catch	0%	13,511	42%	48%	51%	56%	61%	64%	68%	72%	75%	77%
	-5.6%	**12,760	42%	42%	45%	48%	51%	54%	57%	60%	62%	64%
	-10%	12,160	42%	39%	41%	43%	45%	48%	50%	52%	54%	55%
	-20%	10,809	42%	30%	28%	28%	27%	26%	27%	27%	27%	27%
% decreased from the	-30%	9,458	42%	21%	15%	11%	9%	8%	8%	8%	8%	9%
current catch level	-40%	8,107	42%	10%	4%	2%	1%	1%	1%	1%	1%	1%
	-60%	5,404	42%	1%	0%	0%	0%	0%	0%	0%	0%	0%
	-80%	2,702	42%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	-100%	0	42%	0%	0%	0%	0%	0%	0%	0%	0%	0%

MSY

For TB \rightarrow > 10% reduction \rightarrow TAC < 12,160 ton

				1								
	%	Catch (tons)	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
	200%	40,533	36%	41%	85%	97%	100%	100%	100%	100%	100%	100%
	150%	33,778	36%	41%	79%	94%	99%	100%	100%	100%	100%	100%
	100%	27,022	36%	41%	71%	87%	95%	98%	99%	100%	100%	100%
% Increased from the	80%	24,320	36%	41%	66%	83%	91%	96%	98%	99%	100%	100%
current catch level	60%	21,618	36%	41%	61%	77%	87%	93%	96%	98%	99%	99%
	40%	18,915	36%	41%	57%	70%	80%	87%	91%	94%	95%	97%
	30%	17,564	36%	41%	54%	67%	75%	82%	87%	91%	93%	95%
	20%	16,213	36%	41%	52%	61%	70%	77%	81%	86%	89%	90%
	10%	14,862	36%	41%	49%	56%	63%	69%	75%	79%	82%	84%
* Current catch	0%	13,511	36%	41%	47%	51%	56%	60%	64%	68%	71%	74%
	- <mark>5.60</mark> %	**12,760	36%	41%	45%	47%	50%	54%	57%	59%	62%	64%
	-10%	12,160	36%	41%	43%	45%	47%	50%	52%	53%	56%	58%
	-20%	10,809	36%	41%	40%	39%	37%	37%	37%	37%	37%	38%
% decreased from the	-30%	9,458	36%	41%	35%	31%	29%	27%	24%	23%	22%	21%
current catch level	-40%	8,107	36%	41%	32%	26%	19%	16%	14%	13%	12%	11%
	-60%	5,404	36%	41%	26%	13%	8%	6%	6%	6%	6%	6%
	-80%	2,702	36%	41%	19%	6%	3%	3%	3%	3%	3%	3%
	-100%	0	36%	41%	12%	2%	1%	1%	1%	1%	1%	1%

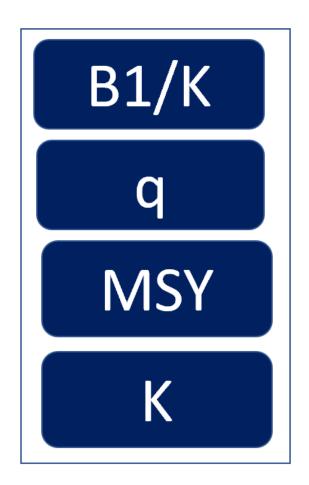
Contents (Part 1)

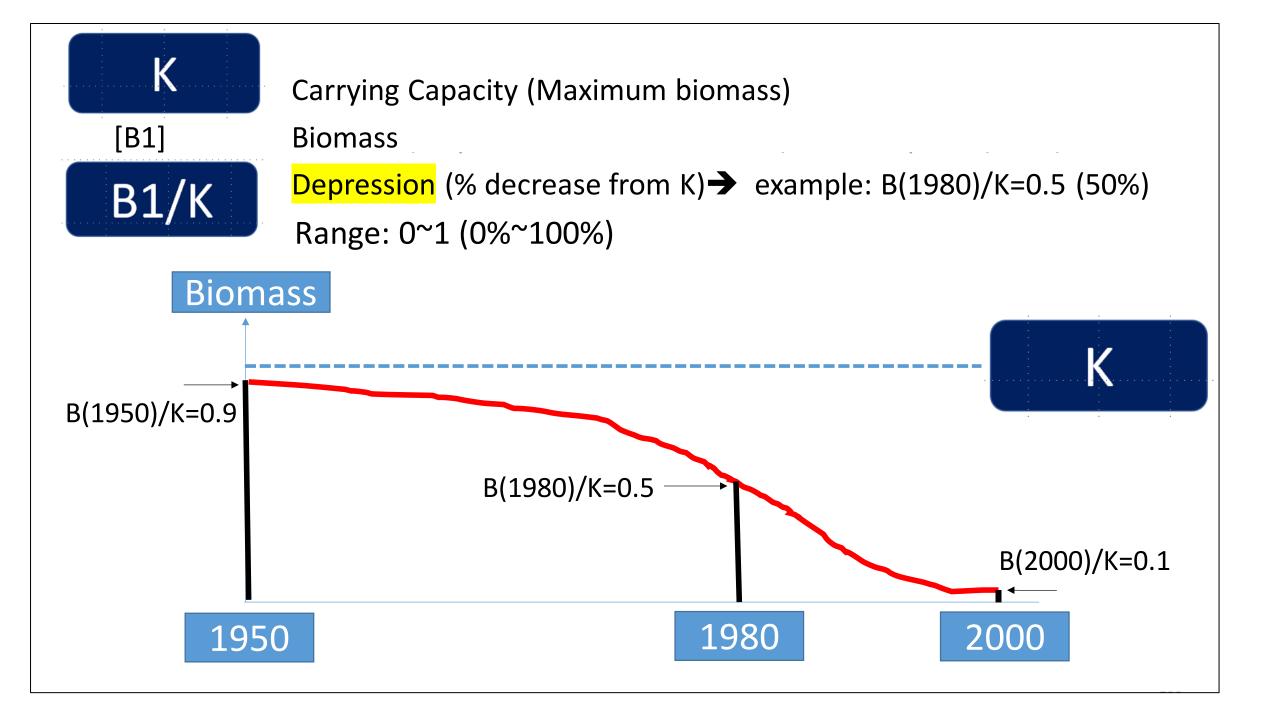

- (1) Background & Objectives
- (2) Outline
- (3) Menu-driven software
 - CPUE standardization
 - Stock and Risk assessment
 - Review
 - Production model (ASPIC and JABBA)
 - Age-Structured Models
 - Management decision making tool (Kobe I+II)

(4) Summary

ASPIC A Stock Production Model Incorporating Covariates

Outline


INPUT Catch & CPUE



OUTPUT (estimation)

- Population (tons)
- Reference points (MSY, Fmsy, TBmsy)
- Pop growth (r and K)
- F and B1/K (depletion)
- q (catchability)

What are 4 parameters ?

Catchability coefficient (efficiency of catch).

If gear A catches 2 times higher than gear B in the same effort, q=1.0 (gear A) and q=0.5 (gear B)

Gear A is 2 times efficient to catch same amount of catch in the same effort by Gear B

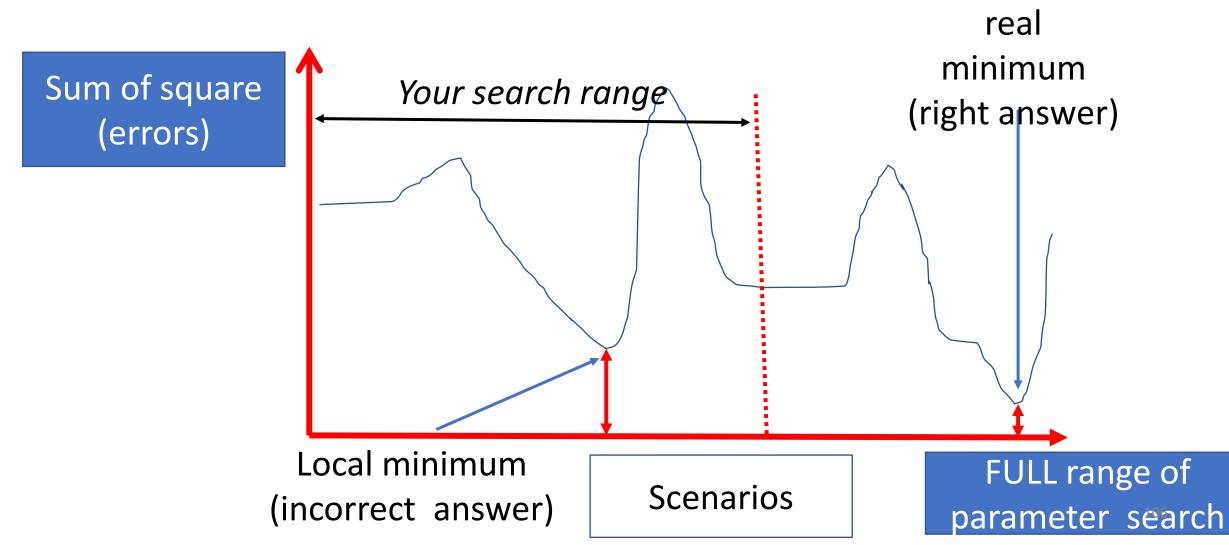
Running ASPIC

Original ASPIC: A Single run/time

■ コマンド ブロンプト	
Microsoft Windows [Version 6.1.7601] Copyright (c) 2009 Microsoft Corporation. All rights reserved.	-
C:¥Users¥TN4>cd C:¥TN¥Neritic(SEAFDEC)¥マニュアル¥4 software (109MB)¥(2) ASPIC original soft) (v 5.05) Prager (2004) (1.3MB)	Ć
C:¥TN¥Neritic(SEAFDEC)¥マニュアル¥4 software (109MB)¥(2) ASPIC (original soft) v 5.05) Prager (2004) (1.3MB)>dir ドライブ C のボリューム ラベルは Windows7_OS です ボリューム シリアル番号は 5CE1-2062 です	
C:¥TN¥Neritic(SEAFDEC)¥マニュアル¥4 software (109MB)¥(2) ASPIC (original soft (v 5.05) Prager (2004) (1.3MB) のディレクトリ)
2016/04/18 23:34 <dir> 2016/04/18 23:34 <dir> 2005/05/17 05:50 939,220 aspic.exe 2011/06/23 14:56 240,313 aspic5_05(manual).pdf 2004/08/18 08:31 132,431 ASPIC5_05.pdf 2006/11/02 21:54 1,659 Command Prompt.Ink 2014/01/24 10:23 2,656 s14.inp 2013/05/28 16:56 4,963 test.inp</dir></dir>	
6 個のファイル 1,321,242 バイト 2 個のディレクトリ 101,927,071,744 バイトの空き領域	

If you have several scenarios on K, B1/K, q and MSY for example 3 each

- 4³⁼ 256
- With 2 models (Schaefer and FOX)
- <u>Then Total 512 combinations</u>
- Too much to do by hand (one by one) (Pencil and Paper method)


→you will be tired

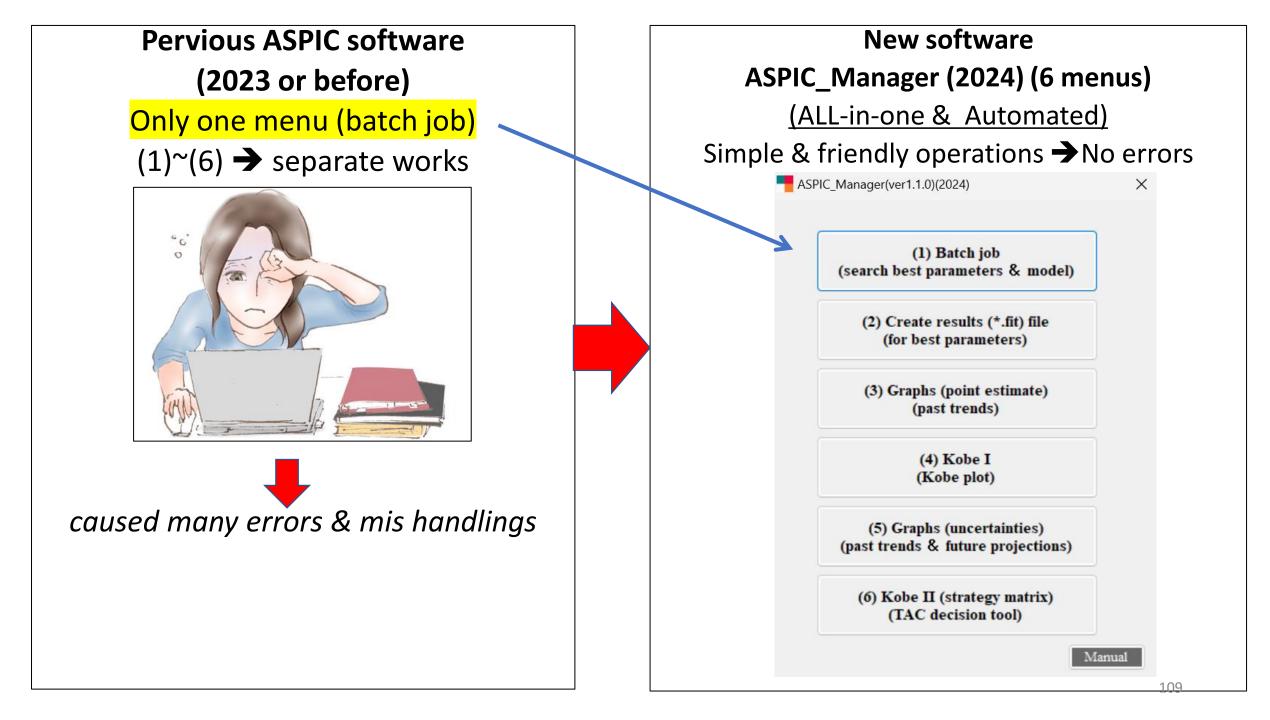
you need strong muscle!

But danger is the local minimum

 False convergences (answers) (incorrect parameters estimated) What is the local minimum? We select optimum parameters when SSE (errors) is minimum. You might find the incorrect SSE (→ parameters) if your search range is <u>limited.</u>

To protect damages of your muscle & to avoid local minimum we develop special software

ASPIC Grid search (Batch job)software (menu driven)(1st version)


Automatic search \rightarrow optimum parameters (based on combination of 4 parameters+2 models)

No need pencil and paper method

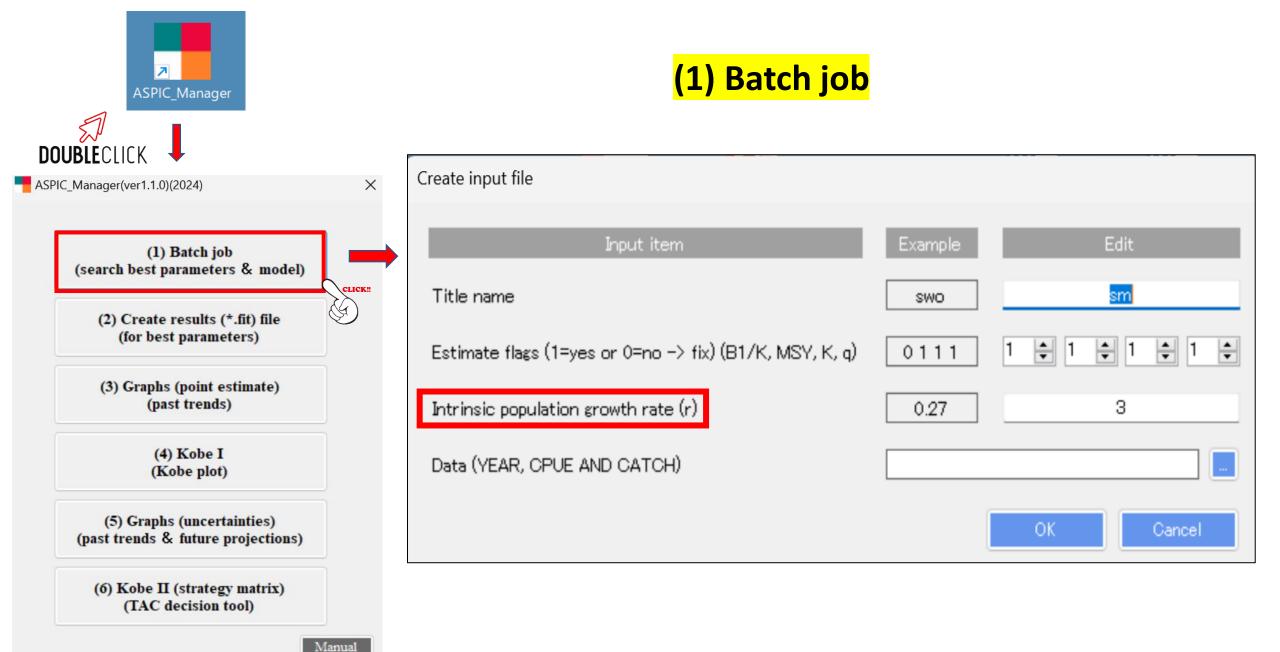
Software works for you (you can rest) No worry about the <u>local</u> minimum

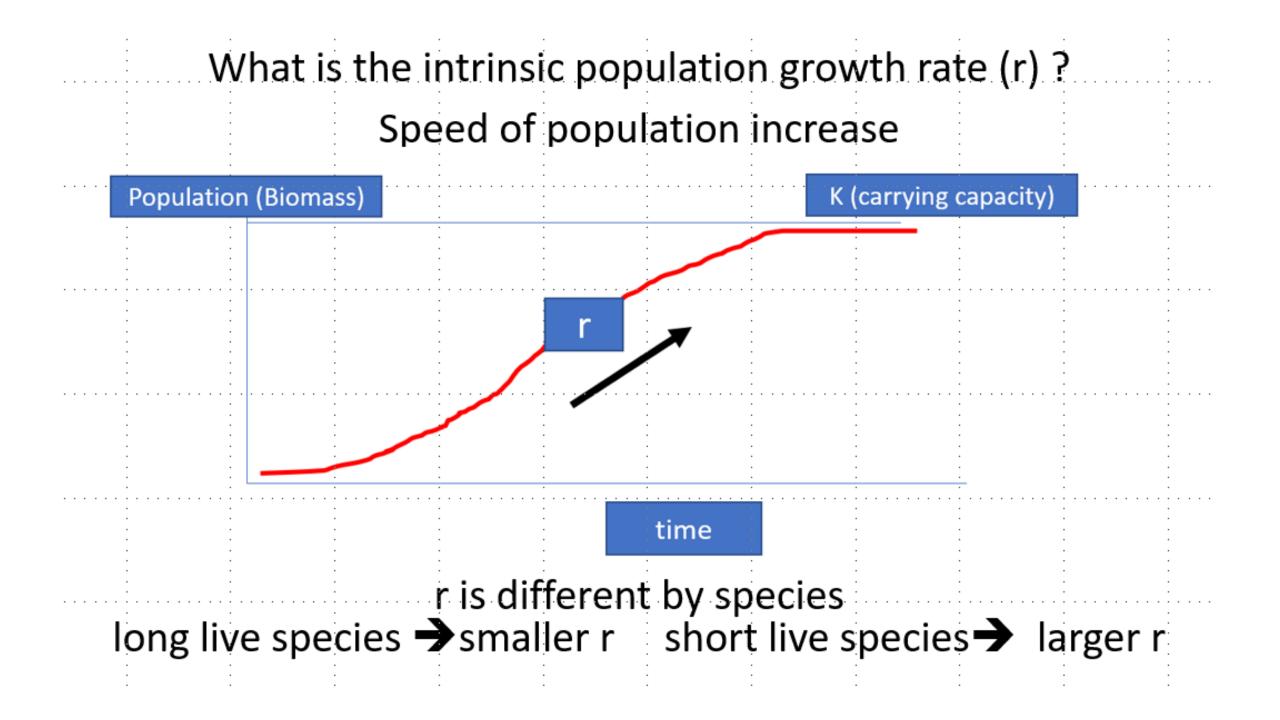
However there are still a lot of manual works → errors + mis-handling

To solve this problem Menu-driven ASPIC_Manager was developed (2024) (no more manual works → almost automatic)

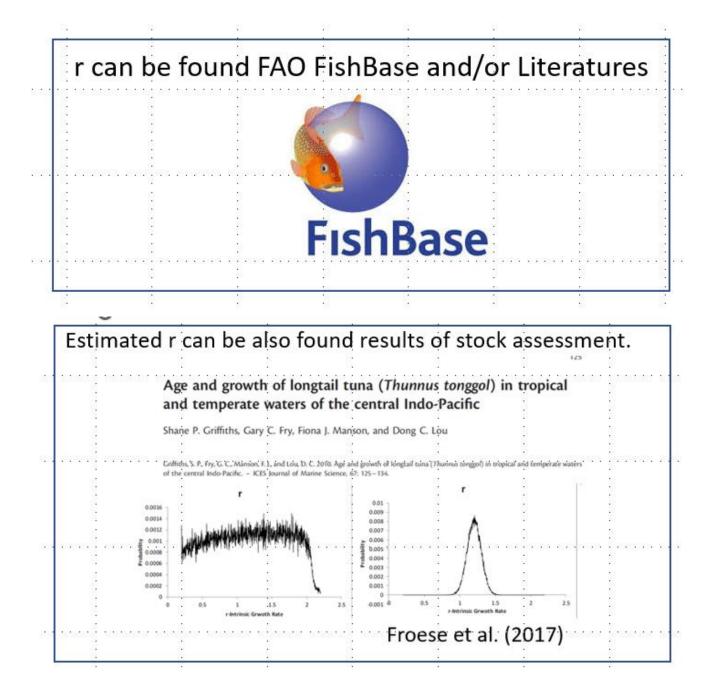
Running software (6 menus) ASPIC_Manager

Program


ASPIC one input file


Users don't need to edit this.

Users only need to make the data set (MUNE)


ASPIC_Manager will do <u>all</u> works for users

FIT :	## Run type (FIT, BOT, or IRF)	: cc	## Series type (CC = CPUE, catch)
"test"·····	····· ## title · · · · · · · · · · · · · · · · · · ·	1950 .	1
LOGISTIC YLD SSE	## Modeltype, conditioning, loss fn	1951	-1 2581
2		1952	-1 2993
	## Verbosity on screen (0-3); add 10 for SUM & PRN file	1953	-1 3303
1000	## Number of bootstrap trials, <= 1000	1954	-1 3034
0.20000	## 0=no MC search, 1=search, 2=repeated srch; N trials	:	(another d)
1d-8	## Convergence crit. for simplex	: '	omitted)
3d-8 6	## Convergence crit. for restarts, N restarts	1964	380 11258
1d-4 24	## Conv. crit. for F; N steps/ <u>yr</u> for gen. model	1965	240 8652
8d0	## Maximum F when cond. on yield	1966	
1d0	## Stat weight for B1>K as residual (usually 0 or 1)	1967	278 9107
		1968	220 9172
1	## Number of fisheries (data series)	: 1969	197 9203
1 :	## Statistical weight for data series	: 1970	219 9495
1 .	## B1/K (starting guess, usually 0 to 1)	1971	1 5266
7300	## MSY (starting guess)	1972	-1 4766
70000	## K (carrying capacity) (starting guess)	1973	-1 6074
0.004	## q (starting guesses 1 per data series)	1974	-1 6362
		1975	350 8839
0111	## Estimate flags (0 or 1) (B1/K, MSY, K and q)	1976	309 6696 337 6409
3000 15000	## Min and max constraints MSY	1977	445 11835
23000 170000	## Min and max constraints K	1978	316 11937
39332385	## Random number seed (large integer)	1980	252 13558
35	## Number of years of data in each series	1981	231 11180
"CPUE Catch"	## Title for 1st series (<=40 chars)	1982	283 13215
		1983	222 14527
: :		1984	213 12791

How to search Intrinsic population growth rate (r) ?

Setting up entries → 162 Combinations (optimum)

Difficult task to set MSY & K (mini, start, max)

Software provides theoretically valid values automatically.

ASPIC_Manager(ver1.1.0)(2024)		. : .
Input file(*.inp)		
C:\ESL Software\ASPIC_Manager\ASPIC Sample data\(1) Batch job\test.inp	Start	CLICK:
Models :	(To terminate, close the wind	low Clicking X)
Schaefer Schaefer Schaefer Schaefer Schaefer Schaefer		
mini(<=)	·····	· · · · · · · · · · · · · · · · · · ·
B1∕K 0.1 🖶 0.5 🖨 1.0 🐳 0.4 🛱 🛐		
q 0.003 0.004 0.005 0.001 3		
	······	•
set up mini(1,000tons) Start max(1,000tons) step		· · ·
MSY 3 7.3 15 5 3		
к <u>17</u> 70 <u>170</u> <u>60</u> <u>3</u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		· · ·
		· · ·
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
total number of combinations (batch job)		· · ·
	<u> </u>	· · ·
Pro	ocessing time: 00h00m	00/00
[Current batch jo	no. of the batch job being process b]	sed]/[total number of the
	· · · · · · · · · · · · · · · · · · ·	99

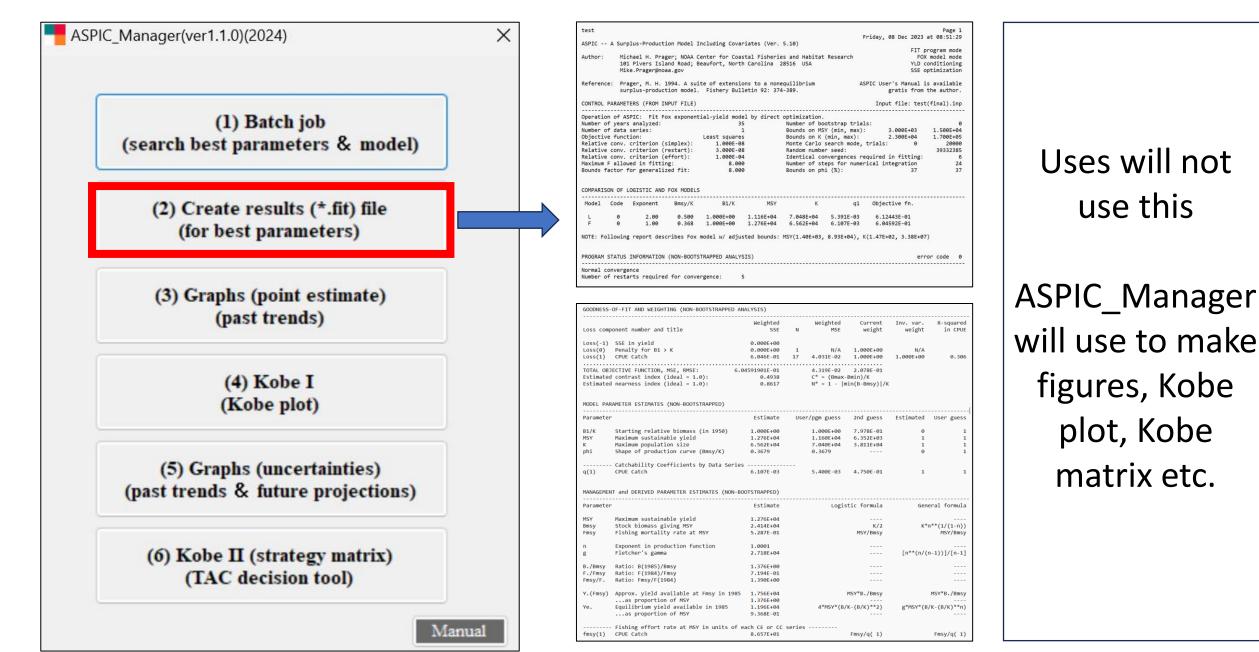
What are theoretically valid values?

Parameter	Min	Start	Max
MSY	Average catch of	1/2 of Max catch	Maximin Catch
	3 lowest annual catches		
К	1.1 times of Max MSY	1.1 times of Min K	4(Schaefer)*Max (MSY)/r
q		0.2*Ave CPUE/Ave catch	
Ч		(average in last 5 years)	

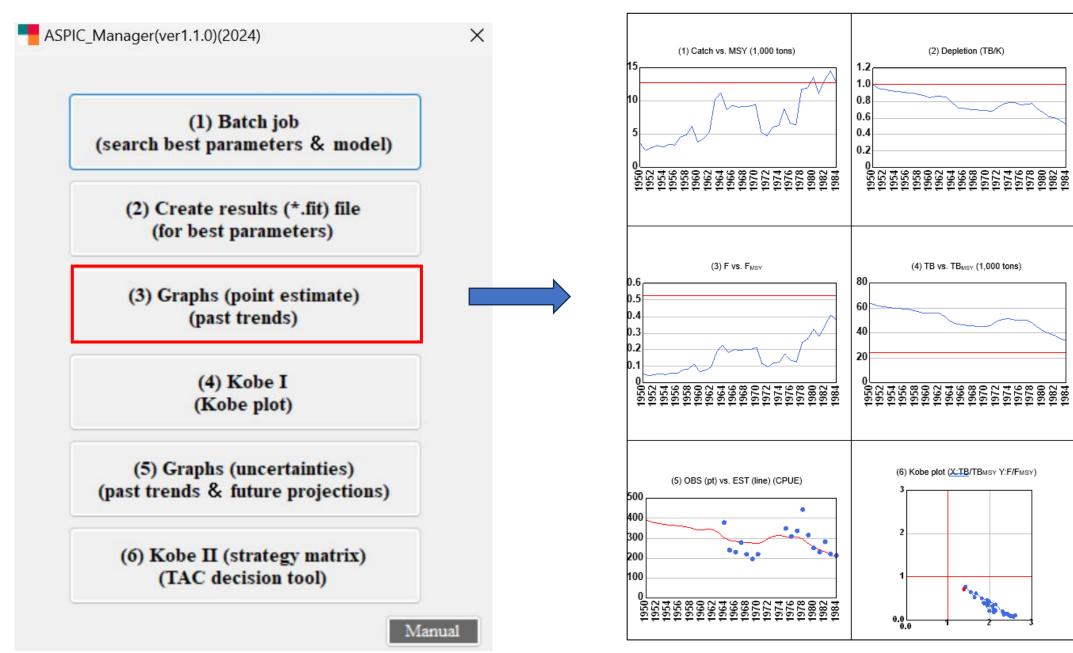
Snapshot Batch job runs

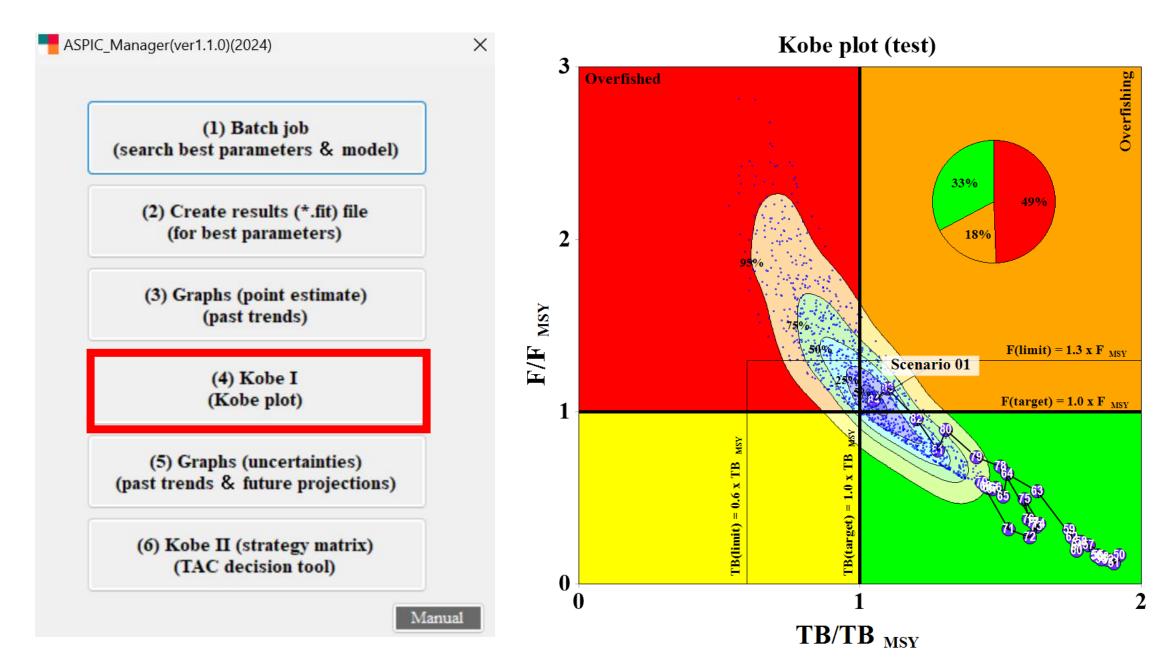
	Manager(ver1.1.0))(2024)					—
nput file C:\ESL So file\test.i	ftware\ASPIC_Ma	anager\ASPIC S	Sample data\(2)	Create test.fit			Start
Models							(To terminate, close the window by clicking X)
Scha	mini(<=)	OX Comb Start 1.0	max(<=)	step Co	ombination 1	ı	R:1It: 144B1/K:1.0000K:7.05E+04MSY:1.12E+04SSE:6.1244253E-01R:2It: 154B1/K:1.0000K:7.05E+04MSY:1.12E+04SSE:6.1244253E-01R:3It: 145B1/K:1.0000K:7.05E+04MSY:1.12E+04SSE:6.1244253E-01R:4It: 140B1/K:1.0000K:7.05E+04MSY:1.12E+04SSE:6.1244254E-01R:5It: 150B1/K:1.0000K:7.05E+04MSY:1.12E+04SSE:6.1244253E-01
q	0.003	0.004	0.005	0.001	3		Elapsed CPU ticks: 7 Elapsed time: 0 hours, 0 minutes, 0 seconds.
set up	mini(1,000tons)	Start	max(1,000tons)	step			NOTE: ASPIC ended normally. The output file is test.fit
MSY	3	7.3	15	5	3		ASPIC Version 5.10
К	17	70	170	60	3		NOTE: Reading input file test.inp TITLE: test
							R:0 It: 523 B1/K:1.0000 K:7.05E+04 MSY:1.12E+04 SSE:6.1244253E-01 R:1 It: 144 B1/K:1.0000 K:7.05E+04 MSY:1.12E+04 SSE:6.1244253E-01 R:2 It: 151 B1/K:1.0000 K:7.05E+04 MSY:1.12E+04 SSE:6.1244253E-01 R:3 It: 143 B1/K:1.0000 K:7.05E+04 MSY:1.12E+04 SSE:6.1244253E-01 R:4 It: 154 B1/K:1.0000 K:7.05E+04 MSY:1.12E+04 SSE:6.1244253E-01 R:5 It: 154 B1/K:1.0000 K:7.05E+04 MSY:1.12E+04 SSE:6.1244253E-01 Elapsed CPU ticks: 27 Elapsed CPU ticks: 27 K:1000 K:10000 K:10000
	total nu	mber of co	mbinations (b	atch job) 🛛	54		Elapsed time: 0 hours, 0 minutes, 0 seconds. NOTE: ASPIC ended normally. The output file is test.fit
							Processing time: 0h0m 33/54 [Current no. of the batch job being processed]/[total number of the

	А	В	С	D	E	F	G	Н	1	J K	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Х	Y
1	Time	0h2m	No of jobs	162	Average	0.0180	Min/job	1.08	Sec/job						_						-			
2	Parameters	Model	B1/K	q	MSY	к					F	λII	res	Sul	ts	ar	es	sav	/ec	וו ל	n t	he	ez	xcel
3	Range (step)	Fox and Schaefer	0.8-1 by 0.1	0.003-0.005 by 0.001-3	3-15 by 5	23-170 by 60						\mathbf{r}	ho	\sim t	c /	~~			~ ~~	<u>ط</u> .			ο.	
1	Flag (0: fixed / 1: estimate)		1	1	1	1							ne	eι	5 (CΟ	IIV	er	ge	u.	ye	22 (X I	no)
4	Weight unit																							
5	(1,000 tons)																							
6																								
7			T	Combin	ation	1						1	, ,		1		1	Results	1		1	1		
8														De lu				.	70		-	D /D	- 1-	
9	No	B1/K	MSY (min)	MSY (start)	MSY (max)	K(min)	K(start)	K(max)	q	R2 🚽	RMS 🖕	r [Est] 🔻	Model 🖕	B1/K [Est]	[Est]	K [Est]	q [Est] 💌	catch	[Est]	TB [Est]	Fmsy [Est]	B/Bmsy [Est]	F/Fmsv [Est]	note 👻
10	13	0.8	3	8	15	23	83	170	0.003	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally.
11	14	0.8	3	8	15	23	83	170	0.004	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally.
12	15	0.8	3	8	15	23	83	170	0.005	0.524	0.175	0.3432	Schaefer	0.113	9.533	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
13	16	0.8	3	8	15	23	140	170	0.003	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
14	17	0.8	3	8	15	23	140	170	0.004	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
15	18	0.8	3	8	15	23	140	170	0.005	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
16	22	0.8	3	13	15	23	83	170	0.003	0.524	0.175	0.3436	Schaefer	0.113	9.534	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally.
17	23	0.8	3	13	15	23	83	170	0.004	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
18	24	0.8	3	13	15	23	83	170	0.005	0.524	0.175	0.3436	Schaefer	0.113	9.534	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally.
19	25	0.8	3	13	15	23	140	170	0.003	0.524	0.175	0.3436	Schaefer	0.113	9.534	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally.
20	26	0.8	3	13	15	23	140	170	0.004	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.52	31.7	0.172	0.473	2.58	ASPIC ended normally.
21	. 27	0.8	3	13	15	23	140	170	0.005	0.524	0.175	0.3436	Schaefer	0.113	9.534	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally.
22	40	0.9	3	8	15	23	83	170	0.003	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
23	41	0.9	3	8	15	23	83	170	0.004	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
24	42	0.9	3	8	15	23	83	170	0.005	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.51	31.69	0.172	0.473	2.58	ASPIC ended normally.
25	43	0.9	3	8	15	23	140	170	0.003	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
26	-	0.9	3	8	15	23	140	170	0.004	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally.
27		0.9	3	8	15	23	140	170	0.005	0.524	0.175	0.3432	Schaefer	0.113	9.533	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
28	-	0.9	3	13	15	23	83	170	0.003	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
29		0.9	3	13	15	23	83	170	0.004	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
30	51	0.9	3	13	15	23	83	170	0.005	0.524	0.175	0.3435	Schaefer Schaefer	0.113	9.533	111	0.0066	12.79	55.52	31.7	0.172	0.473	2.58	ASPIC ended normally.
31		0.9	3	13	15	23	140	170	0.003	0.524	0.175	0.3433	Schaefer Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
32	53	0.9	3	13	15	23	140	170	0.004	0.524	0.175	0.3433	Schaefer Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
33		0.9	3	13	15	23	140	170 170	0.005	0.524	0.175	0.3436		0.113	9.534 9.533	111	0.0066	12.79 12.79	55.52 55.52	31.69 31.7	0.172	0.472	2.58	ASPIC ended normally. ASPIC ended normally.
34 35		1	3	8	15 15	23 23	83	170	0.003	0.524	0.175	0.3435	Schaefer Schaefer	0.113	9.533	111	0.0066	-	55.52	31.7	0.172	0.472	2.58 2.58	
35		1	3	8	15	23	83 83	170	0.004	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1 111	0.0066	12.79 12.79	55.51	31.7	0.172	0.472	2.58	ASPIC ended normally. ASPIC ended normally.
30		1	3	8	15	23	83 140	170	0.003	0.524	0.175	0.3435	Schaefer	0.113	9.533	111.1	0.0066	12.79	55.53	31.09	0.172	0.473	2.58	ASPIC ended normally.
57	70		3		15		140	170	0.003	0.524	0.175	0.3433	surderer	0.113	9.534	111.1	0.0000	12.79	55.55	31.7	0.172	0.472	2.58	Aspic ended normally.
	6 5	Conv	rged	Not	CODUCE				+									:	4	_	_	_	_	118
			ergeu	NOU	conver	yeu or	Errors		1									:						

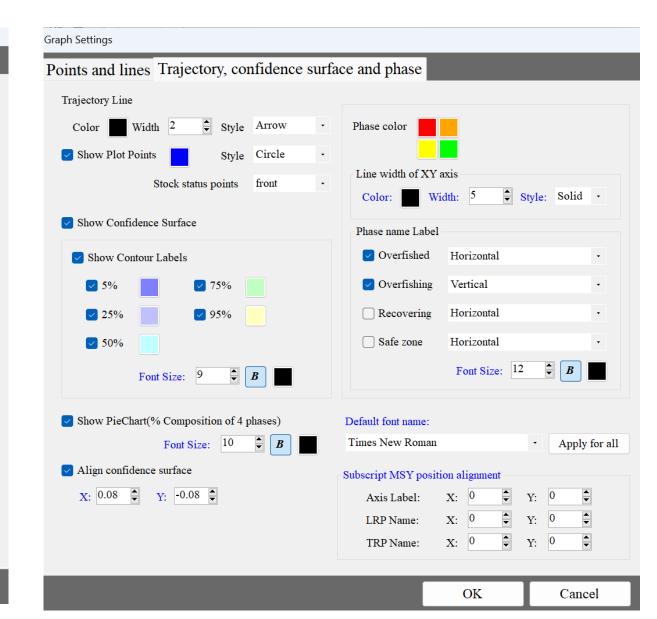

How to decide the best run from converged tuns?

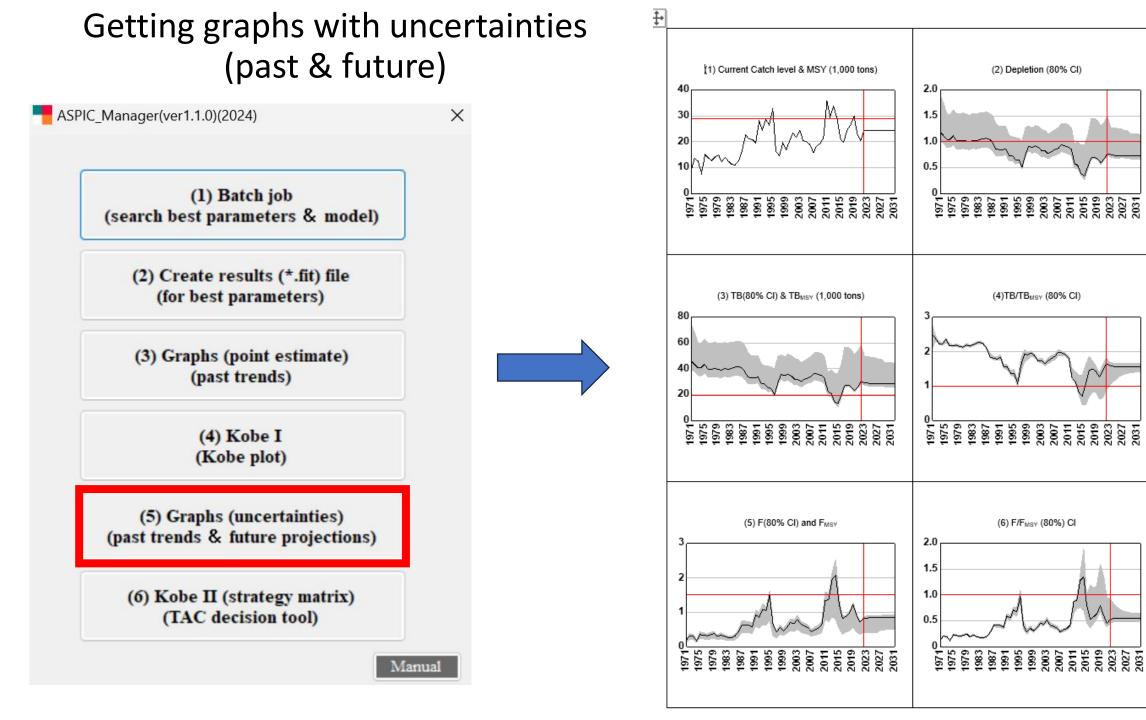
Select the run with (1) Highest R2 (correlation coefficient) and

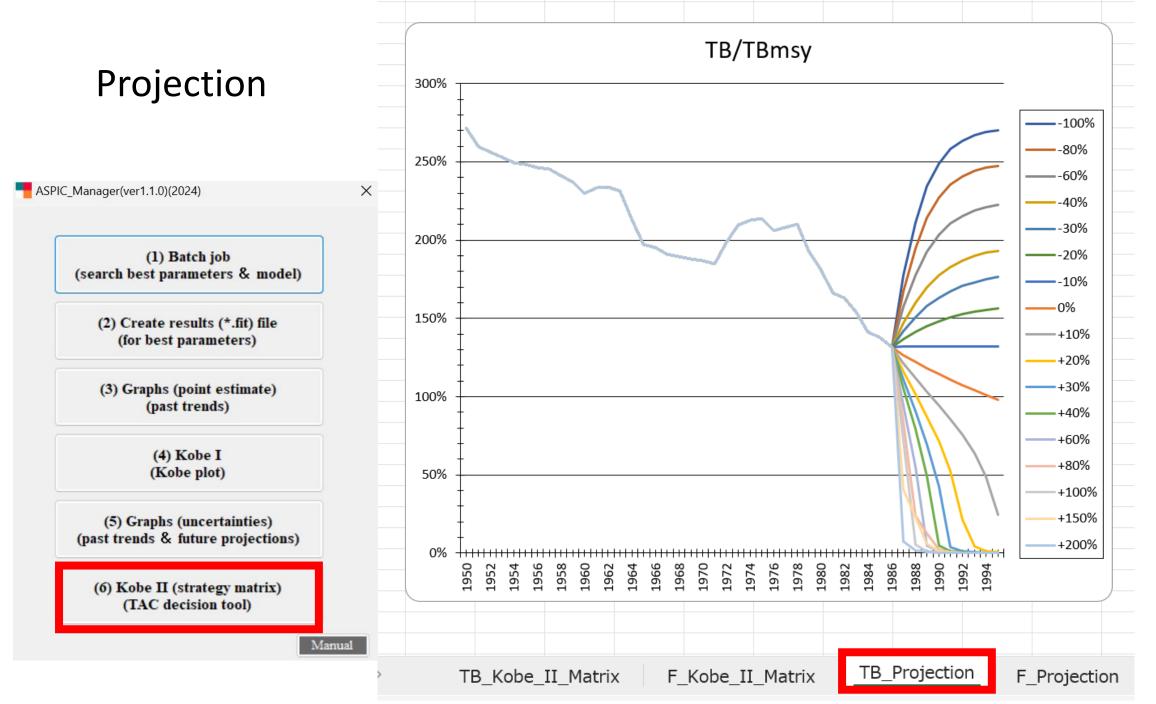

(2) Lowest RMS (errors)


Getting the ASPIC results for the selected (best) run

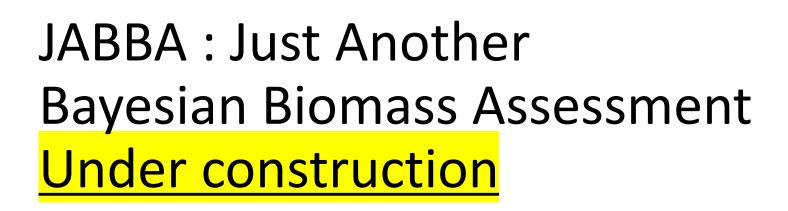
Getting graphs for the selected run




Getting Kobe plot


Editing Kobe plots by Graph setting functions

Graph Settings	
Points and lines Trajectory, confidence surf	face and phase
Select Years to Display 1st Year: 1950 • 35 • Years	✓ Title
1st Year: 1950 - 35 Years	Kobe plot (test)
✓ 1950 ✓ 1954 ✓ 1958 ✓ 1962 ✓ 1966 ✓ 1951 ✓ 1955 ✓ 1959 ✓ 1963 ✓ 1967	Font Size: 18 🗭 B
 ✓ 1952 ✓ 1956 ✓ 1960 ✓ 1964 ✓ 1968 ✓ 1953 ✓ 1957 ✓ 1961 ✓ 1965 ✓ 1969 	✓ Limit Reference Point
All Years	Limit Reference Legend
AxisTitleMin.Max.IncrementX:TB/TBmsy•031	X(%): 0.6 ✓ X: TB(limit) = 0.6 x TBmsy Y(%): 1.3 ✓ Y: F(limit) = 1.3 x Fmsy
Y: F/Fmsy • <u>0</u> <u>2</u> <u>1</u>	Color: Width: 1 Style: Solid -
Font Size: 20 B Reset	Font Size: 10 🗧 🖪
Change titles of XY axis to other names \Box X: \Box Y:	✓ Target Reference Point
	Limit Reference Legend
Mark	X(%): 1.0 \checkmark X: TB(target) = 1.0 x TBmsy
Mark Size: 10 🗧 Mark Color:	Y(%): 1.0 Y: $F(target) = 1.0 \text{ x Fmsy}$
Font Size: 10 B Color:	Color: Width: 1 Style: Solid -
	Font Size: 10 🗘 B
	OK Cancel
	UK Cancel


(risk matrix)													
					<u> </u>	Color '	legend		<u> </u>		<u> </u>		
_Manager(ver1.1.0)(2024)	×	Risk	c levels	Lov	w risk		dium v risk		dium h risk	High risk			
(1) Batch job		Pro	bably	0 -	- 25%	25 -	- 50%	50 -	- 75%	75 -	100%		
(search best parameters & model)		%	Catch (tons)	1985	1986	1987	1988	1989	1990	1991	1992	1993	199
(2) Create results (*.fit) file		200%	40,533	36%	41%	85%	97%	100%	100%	100%	100%	100%	100
(for best parameters)		150%	33,778	36%	41%	79%	94%	99%	100%	100%	100%	100%	100
		100%	27,022	36%	41%	71%	87%	95%	98%	99%	100%	100%	100
(3) Graphs (point estimate)	% Increased fr	from the 80%	24,320	36%	41%	66%	83%	91%	96%	98%	99%	100%	100
(past trends)	current catch	C00/	21,618	36%	41%	61%	77%	87%	93%	96%	98%	99%	99%
		40%	18,915	36%	41%	57%	70%	80%	87%	91%	94%	95%	979
(4) Kobe I		30%	17,564	36%	41%	54%	67%	75%	82%	87%	91%	93%	959
(Kobe plot)	_	20%	16,213	36%	41%	52%	61%	70%	77%	81%	86%	89%	90%
		10%	14,862	36%	41%	49%	56%	63%	69%	75%	79%	82%	849
	* Current c		13,511	36%	41%	47%	51%	56%	60%	64%	68%	71%	749
(5) Graphs (uncertainties) (past trends & future projections)	-	-5.60%	**12,760	36% 36%	41%	45% 43%	47% 45%	50% 47%	54% 50%	57% 52%	59% 53%	62% 56%	649 589
(past trends & luture projections)	-	-10%	12,160	36%	41%	43%	39%	37%	37%	37%	37%	37%	389
	% decreased fi		9,458	36%	41%	35%	31%	29%	27%	24%	23%	22%	219
(6) Kobe II (strategy matrix)	current catch		8,107	36%	41%	32%	26%	19%	16%	14%	13%	12%	119
(TAC decision tool)		-60%	5,404	36%	41%	26%	13%	8%	6%	6%	6%	6%	6%
		-80%	2,702	36%	41%	19%	6%	3%	3%	3%	3%	3%	3%
Manu		-100%	0	36%	41%	12%	2%	1%	1%	1%	1%	1%	1%
	(Note) * Averaç	ge catch for 3 last ass TB_Kobe_II_I	-	rs ** MSY l	level						+		

Contents (Part 1)

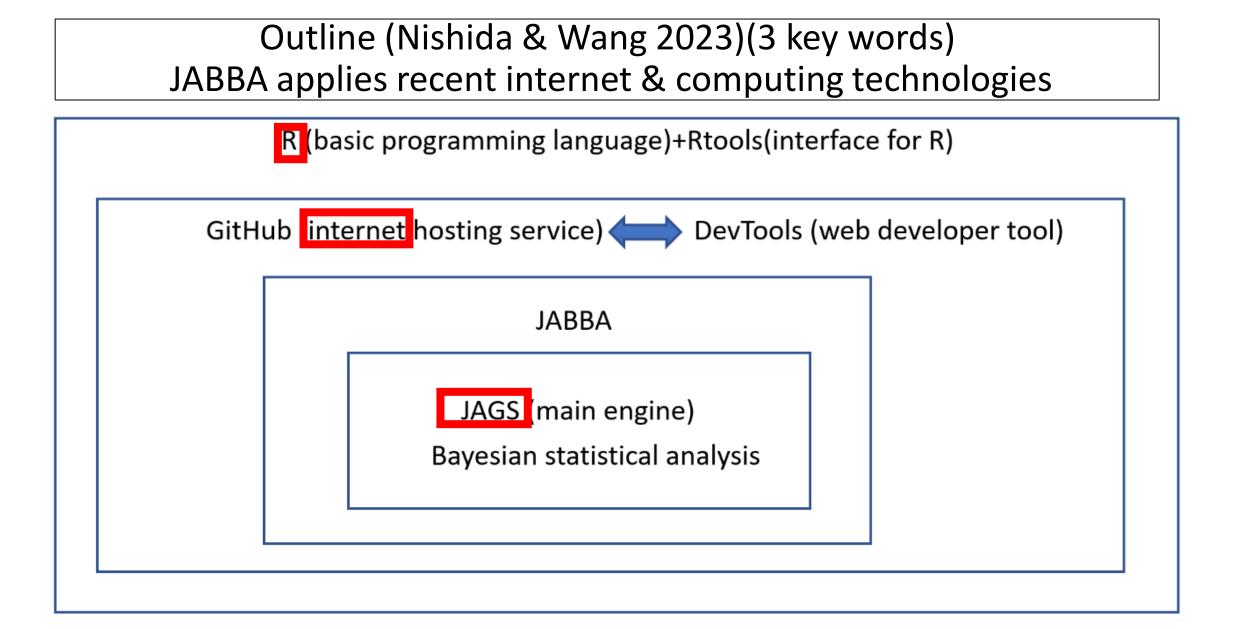
- (1) Background & Objectives
- (2) Outline
- (3) Menu-driven software
 - CPUE standardization
 - Stock and Risk assessment
 - Review
 - Production model (ASPIC and JABBA)
 - Age-Structured Models
 - Management decision making tool (Kobe I+II)

(4) Summary

Theoretically Best Production model

There are several similar hand-made models JABBA : best → Standardized Input/Output Bayesian, Good Graphics, Diagnosis, MCMC.....

JABBA (Complicated & many functions)


State space model

Many sub-models incorporated → good for future projection

Process & OBS error, Bayesian, MCMC (uncertainties),

& diagnostics (retrospective analyses & hind casting)

But <u>basic idea</u> is the production model (catch & CPUE)(simple)

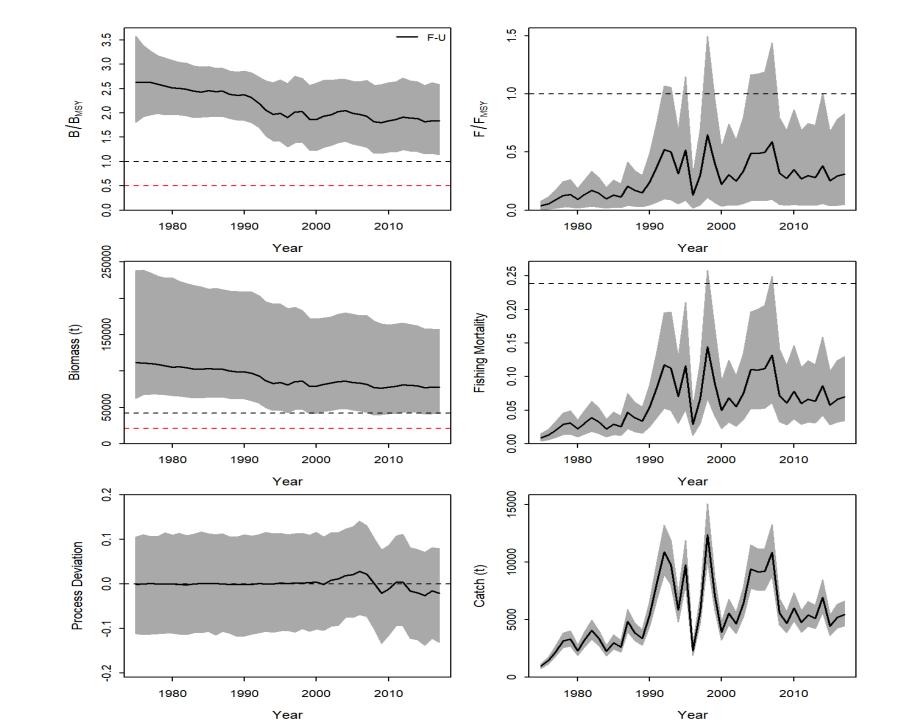
JAGS : Just Another Gibbs (MCMC) Sampler

Rough Image of Menu-driven JABBA_Manager (by the end of 2024)

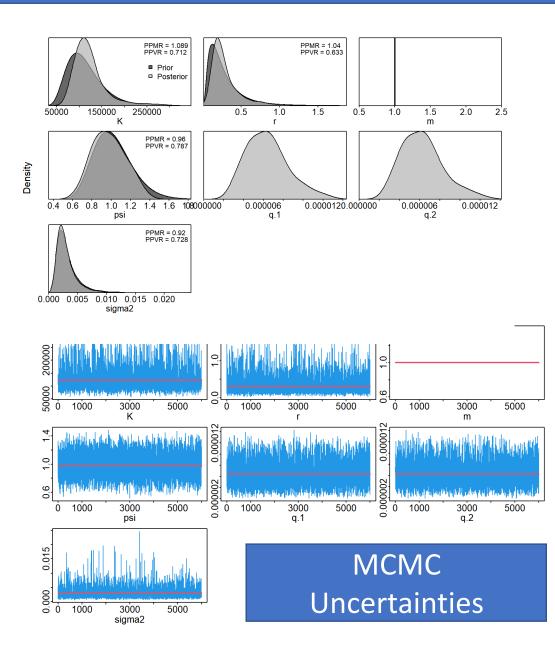
(1)
 Base case (FOX & Schaefer)
 input (catch/CPUE & priors)
 Scenarios → Select the best model

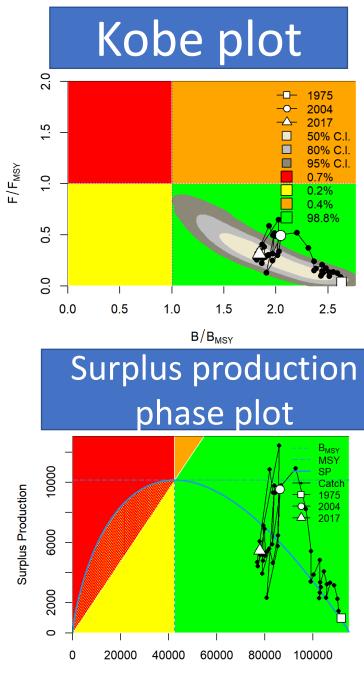
(2)
 Sensitivity analyses
 → Select the best run
 from base case & sensitivities

(3) Summary of results


(4) Kobe I (plot) + Kobe II (matrix)

Sample outputs (many useful graphs)


To be explained in the users manual when the software is completed (2024)


Estimated parameters with Uncertainties (JAGS MCMC)

Similar to ASPIC

Bayesian (Priors and Posteriors)

Biomass

One weak point : JABBA

No Risk assessment → <u>We will add Risk assessment to JABBA</u>

Menu-driven JABBA_Manager (2024) -> World most powerful PM

Medium Medium Low risk **Risk levels** High risk low risk high risk Probably 0 - 25% 25 - 50% 50 - 75% Catch 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 (tons) 200% 40,533 36% 41% 150% 33,778 36% 41% 100% 27,022 36% 41% 71% 24,320 36% 41% 66% 80% % Increased from the 87% 21,618 36% 41% 61% 60% current catch level 41% 40% 18,915 36% 57% 70% 36% 41% 54% 75% 30% 17,564 67% 20% 16,213 36% 41% 52% 61% 70% 77% 75% 10% 14,862 36% 41% 49% 56% 63% 69% 36% 41% 47% * Current catch 0% 13,511 51% 56% 60% 64% 68% 71% 74% 41% 45% -5.60% **12,760 36% 47% 50% 54% 57% 59% 62% 64% -10% 12,160 41% 43% 45% 47% 50% 52% 53% 56% 36% 58% 41% 37% -20% 10.809 36% 40% 39% 37% 37% 37% 37% 38% 29% 24% -30% 9,458 36% 41% 35% 31% 27% 23% 22% 21% % decreased from the current catch level -40% 8.107 36% 41% 32% 26% 19% 16% 14% 13% 12% 11% -60% 5,404 36% 41% 26% 13% 8% 6% 6% 6% 6% 6% 3% 3% -80% 2,702 36% 41% 19% 6% 3% 3% 3% 3% 1% -100% 0 36% 41% 12% 1%

Risk probability (%) violating TB(MSY) level by catch level

Color legend

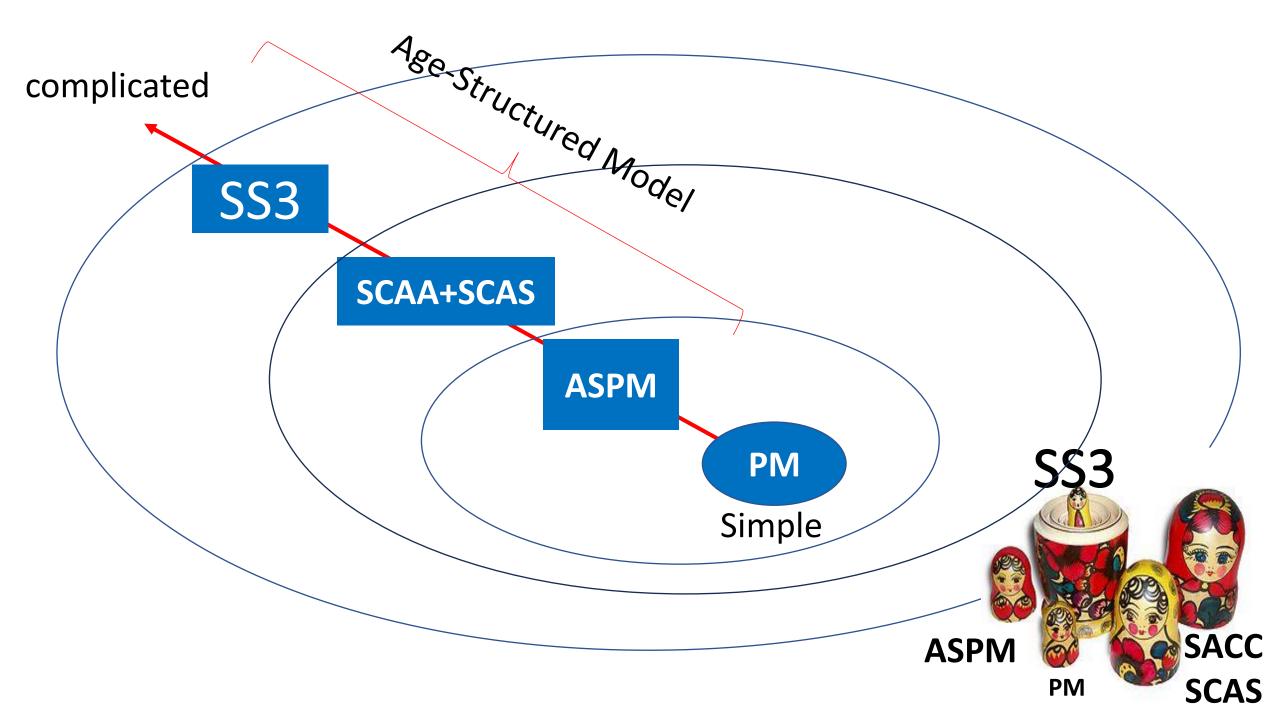
(Note) * Average catch for 3 last assessments years ** MSY leve

∃ (●

Contents (Part 1)

- (1) Background & Objectives
- (2) Outline
- (3) Menu-driven software
 - CPUE standardization
 - Stock and Risk assessment
 - Review
 - Production model (ASPIC and JABBA)
 - Age-Structured Models
 - Management decision making tool (Kobe I+II)

(4) Summary


ASPM(Age-Structured Production Model) is recommended

			Data and parameters											
	Models		Stock structure	Catch	CPUE	size / age	M (natural mortality)	LW relation	Growth	Maturity + fecundity	Space & movement			
Data	limit approach	SRA (Catch only)												
Drod	Production model													
		JABBA												
	Simple model (no CPUE)	Cohort analysis												
Age / size structured model	Simple integrated model	ASPM												
model	Integrated model	SCAA, SCAS, SS3, CASAL									SS3			

Why ASPM recommended ?

Simpler than other Age structured models

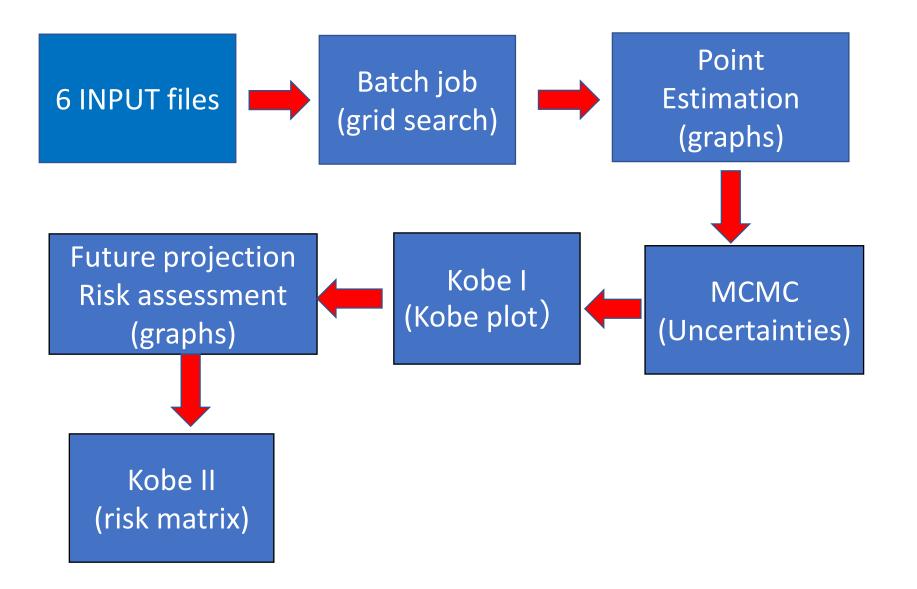
No CAA (catch at age) → Selectivity fixed → easy to converge Biological data (utilized) Good (bagus) for beginners

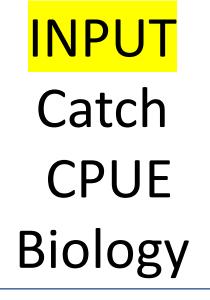
ADMB Implemented ASPM

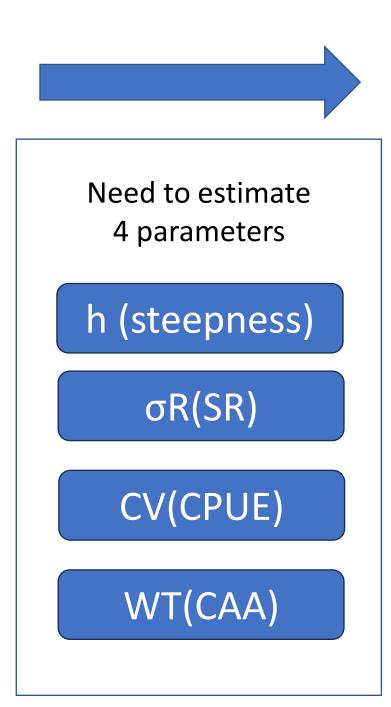
Tom Nishida [MENU] Menu-driven stock assessment software developing team

> Doug Butterworth + Rebecca Rademeyer (Univ of Cape Town, South Africa)

Original ASPM (ICCAT)


Restorep (1997) FORTAN (outdated)


Re-coded by AD Model Builder

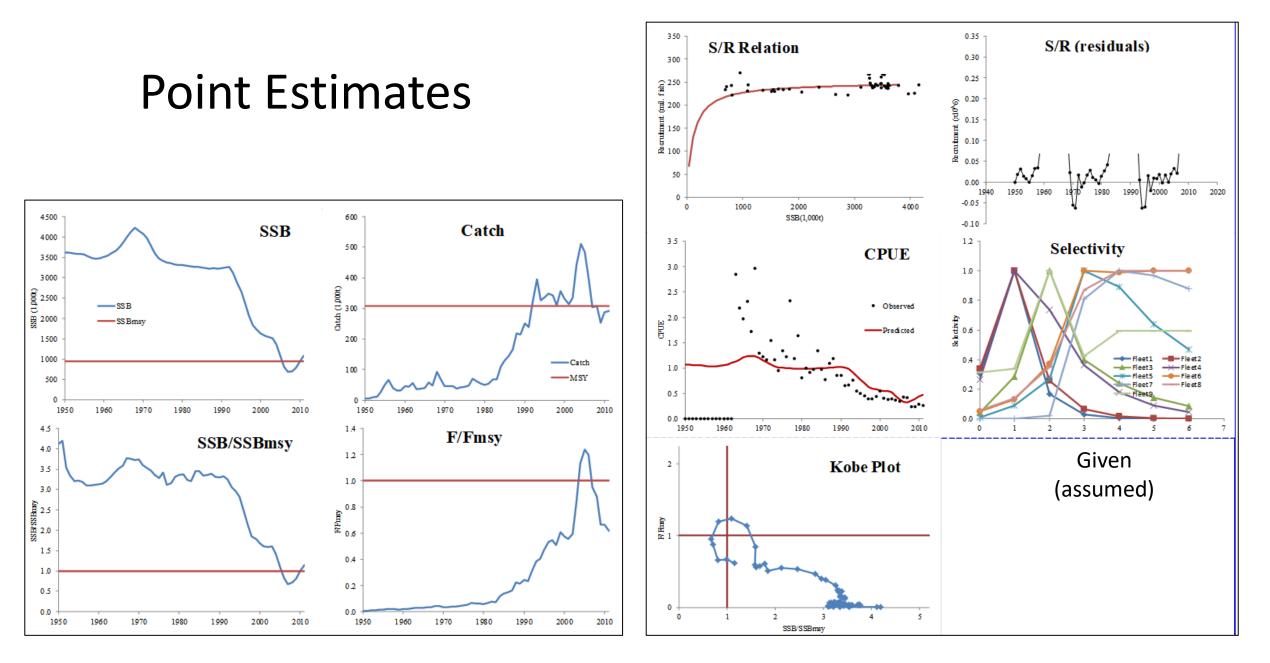

We developed the user's friendly software (menu-driven)

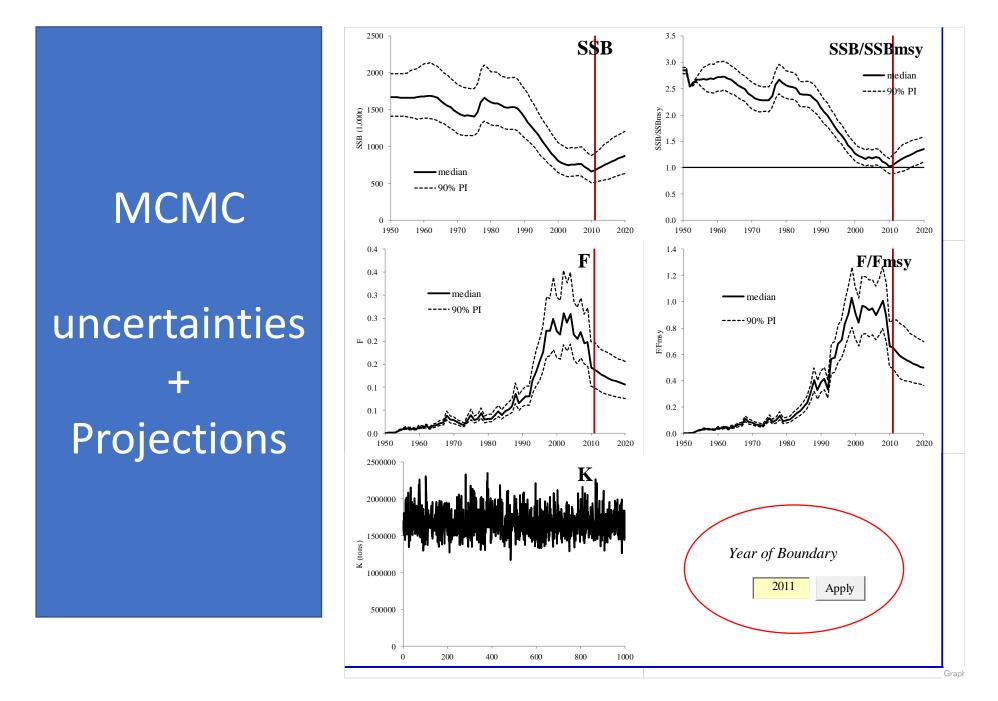
6 years

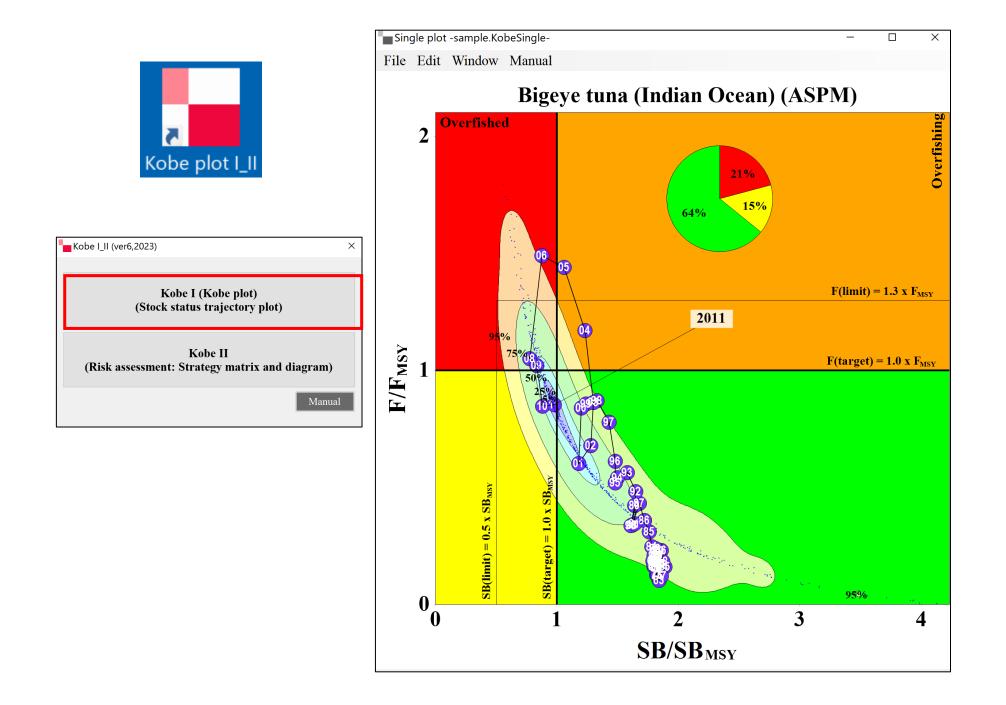
ASPM: Flow

OUTPUT (estimation)

- Reference points (MSY, Fmsy, SBmsy)
- K, B1/K (depletion)
- q (catchability) (by gear)
- Population size (by age)
- F (by gear & age)
- SR relation




ASPM grid search (batch job) application (ASPM software version 3)


This application will implement the batch job in order to search optimum ASPM parameters using the grid search technique. Maximum 5 important parameters can be searched in one catch job, i.e., "h" (steepness) in ASPM.pin file, "SigmaR" value for the stock recruitment (SR) fluctuations in control.inp, "CV" values for CPUE in index.inp file and "weighting" values for CAA in fishery.inp file .

- Steps (1) Users will select parameters (click the box) to be used for the grid search and then enter their minimum, maximum and class values. The number of combination will be automatically evaluated.
 - (2) If users enter the class value which cannot make the integer value for number of combination, the maximum class value will be automatically evaluated.
 - (3) Results of the grid search will be available in the output_datetime.csv file in the same folder. For example, output_201404011521.csv file. This means that this file was created at 15 hour 21 minute in April 11, 2014.

Parameters	Option of batch job
Name country code minimum maximum class value no. of (CPUE) combinat	
ASPM.pin file	Start Pause Termination
M h (steepness) 0.60 ÷ 0.90 ÷ 0.10 ÷ 4	0.4 1990 6.8953
	0.4 1991 5.9691
control.inp file	0.4 1992 6.0693
	0.4 1993 5.8433
✓ Sigma (SR fluctuation) 0.10 ÷ 0.50 ÷ 0.10 ÷ 5	0.4 1994 5.1545 0.4 1995 5.3555
	0.4 1995 5.3555
_ index.inp file	0.4 1997 4.3752
	0.4 1998 4.7748
✓ CV (CPUE1) JPN 0.10 ÷ 0.50 ÷ 0.10 ÷ 5	0.4 1999 4.6303
	0.4 2000 3.9942
✓ CV (CPUE2) KOR 0.10 ÷ 0.50 ÷ 0.10 ÷ 5	0.4 2001 3.9847
	0.4 2002 3.2245
	0.4 2003 3.8008
	0.4 2004 4.1753
	0.4 2005 4.6661 0.4 2006 4.262
Note (1) If you have 2 CPUE series in index.in file (for example, Japan and Korea), then en	TOCH TO THE TOTAL STREET
J (for Japan) and K (for Korea). J and K are just example. You can enter maximum letters as the country code in this box.	0.4 2007 4.4725
	0.4.2009.3.3141
(2) Number of CPUE CV depends on #Number of indices in the Index.inp file, which	will 0.4 2010 3.4871
be automatically recognized by this application and corresponding number of	0.4 2011 5.2006
entry boxes will appear in the setting window. Max 3 CV (CPUE) can be used.	0.4 2012 6.3754
februire file	0.4 0 0
fishery.inp file	
Weining (CAA) 0.10	End data section
Note (3 umber of weighting (CAA) box depends on "#Number of fleets" in control file,	
nich will be automatically recognized by this application and corresponding	
mber of entry boxes will appear.	Processing time: 0h8m 208/2500
	[Current no. of the batch job being processed]/[total number of the
Total number of batch jobs: 2	500 batch job]

Kobe II (risk matrix)

					Color	legend					1	
	Risk I	levels	Low	risk	Med	-		dium v risk	High	n risk		
	Probably		0 - 25%		25 - 50%		high risk 50 - 75%		75 - 100%			
	%	Catch (tons)	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
	200%	40,533	36%	41%	85%	97%	100%	100%	100%	100%	100%	100%
	150%	33,778	36%	41%	79%	94%	99%	100%	100%	100%	100%	100%
	100%	27,022	36%	41%	71%	87%	95%	98%	99%	100%	100%	100%
% Increased from the	80%	24,320	36%	41%	66%	83%	91%	96%	98%	99%	100%	100%
current catch level	60%	21,618	36%	41%	61%	77%	87%	93%	96%	98%	99%	99%
	40%	18,915	36%	41%	57%	70%	80%	87%	91%	94%	95%	97%
	30%	17,564	36%	41%	54%	67%	75%	82%	87%	91%	93%	95%
	20%	16,213	36%	41%	52%	61%	70%	77%	81%	86%	89%	90%
	10%	14,862	36%	41%	49%	56%	63%	69%	75%	79%	82%	84%
* Current catch	0%	13,511	36%	41%	47%	51%	56%	60%	64%	68%	71%	74%
	-5.60%	**12,760	36%	41%	45%	47%	50%	54%	57%	59%	62%	64%
	-10%	12,160	36%	41%	43%	45%	47%	50%	52%	53%	56%	58%
	-20%	10,809	36%	41%	40%	39%	37%	37%	37%	37%	37%	38%
% decreased from the	-30%	9,458	36%	41%	35%	31%	29%	27%	24%	23%	22%	21%
current catch level	-40%	8,107	36%	41%	32%	26%	19%	16%	14%	13%	12%	11%
	-60%	5,404	36%	41%	26%	13%	8%	6%	6%	6%	6%	6%
	-80%	2,702	36%	41%	19%	6%	3%	3%	3%	3%	3%	3%
	-100%	0	36%	41%	12%	2%	1%	1%	1%	1%	1%	1%

Contents (Part 1)

- (1) Background & Objectives
- (2) Outline
- (3) Menu-driven software
 - CPUE standardization
 - Stock and Risk assessment
 - Review
 - Production model (ASPIC and JABBA)
 - Age-Structured Models
 - Management decision making tool (Kobe I+II)

(4) Summary

Kobe I+II Manager Most recent version (v6.2.1) (2024)

Management decision making tool

Kobe I+II

Kobe I (Kobe plot) (stock status trajectory)

- Effective tool to understand changes of historical status of stock
- Recent stock status \rightarrow important for management advice

Kobe II (Strategy matrix) (Risk assessment)

• Effective tool to understand Probabilities of risks to violate MSY for F and Biomass in the future by different catch level → advice for TAC

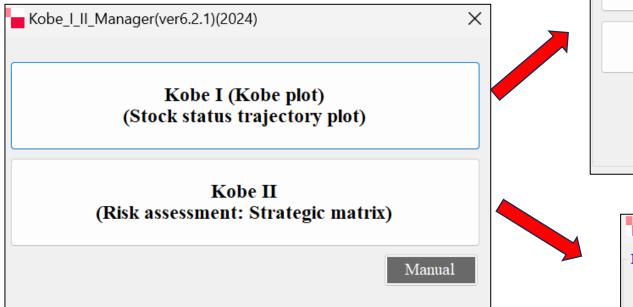
Kobe I+II : Visualized tool

Comprehensive tool: to bridge scientists → managers/industry

This Kobe I+II Manager → Independent use why ?

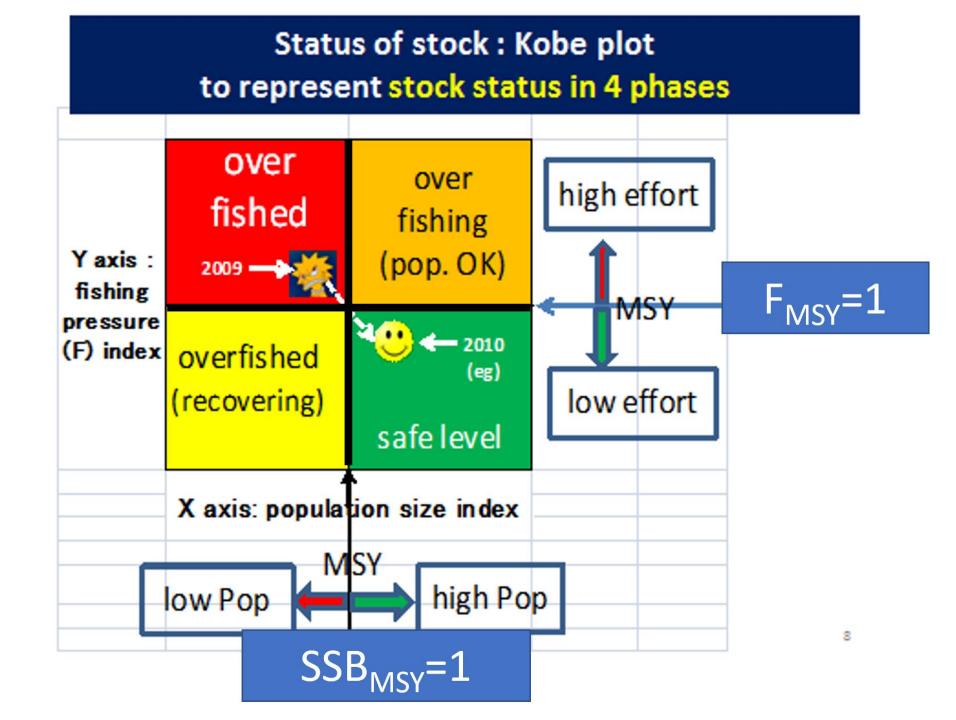
Kobe I+II <u>customized</u> for ASPIC_Manager & JABBA_Manager are available within their software

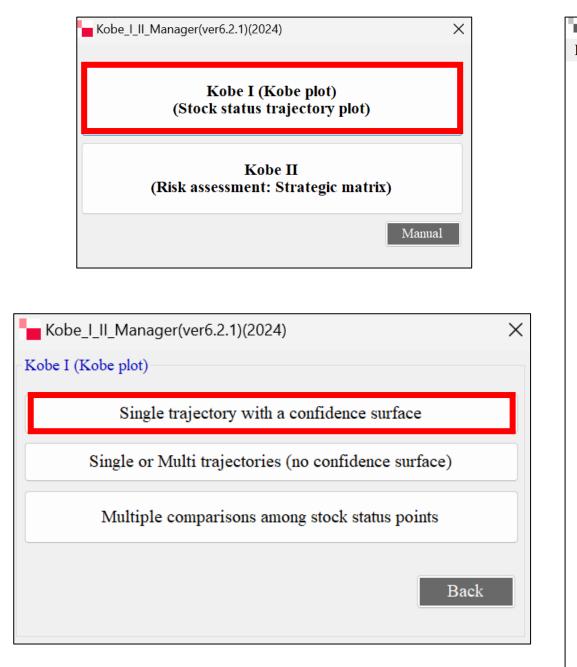
That is why this software is for Independent & general use

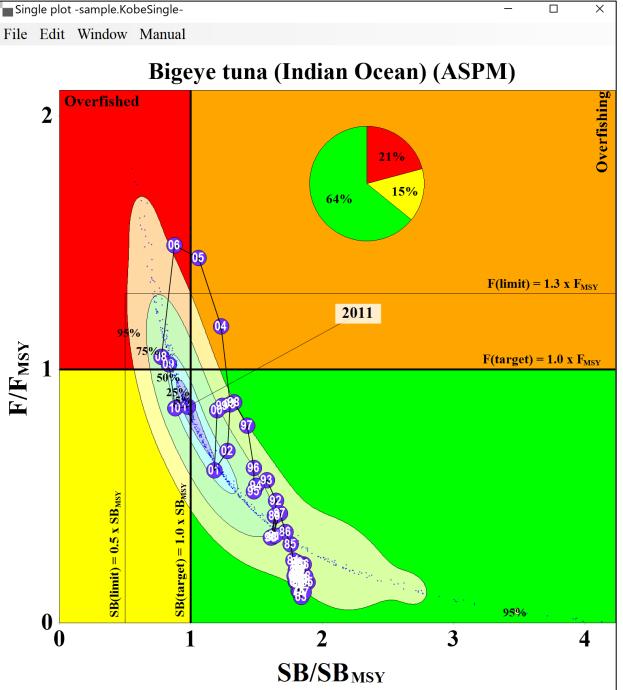

Why we call KOBE (神戸) ? Any relation to the Kobe beef?

Kobe I (Kobe plot) + II (strategy matrix) agreed by 5 <u>tuna</u> RFMO meetings (IOTC+4)

Kobe I (Kobe plot) Stock status trajectory plot **First** meeting in 2007 (**Kobe**, Japan) **Second** meeting in 2009 (Barcelona, Spain) Kobe II (strategy matrix) Spreading also to demersal RFMOs and others (e.g. NAFO, SEAFO, NPFC.....)

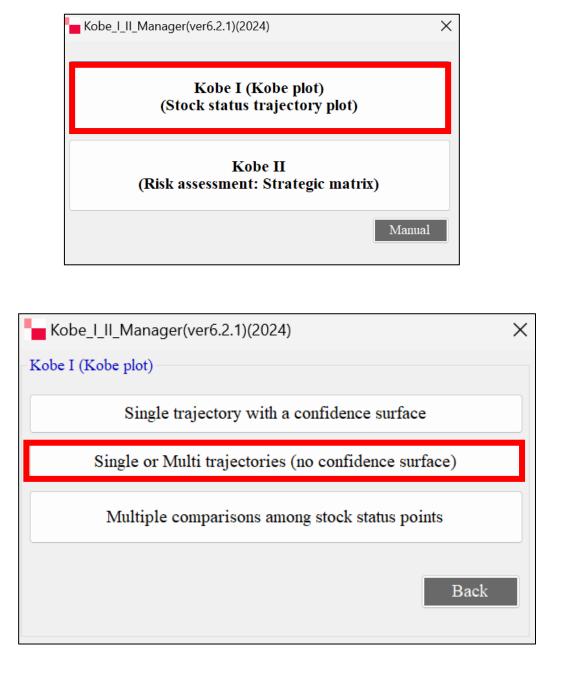


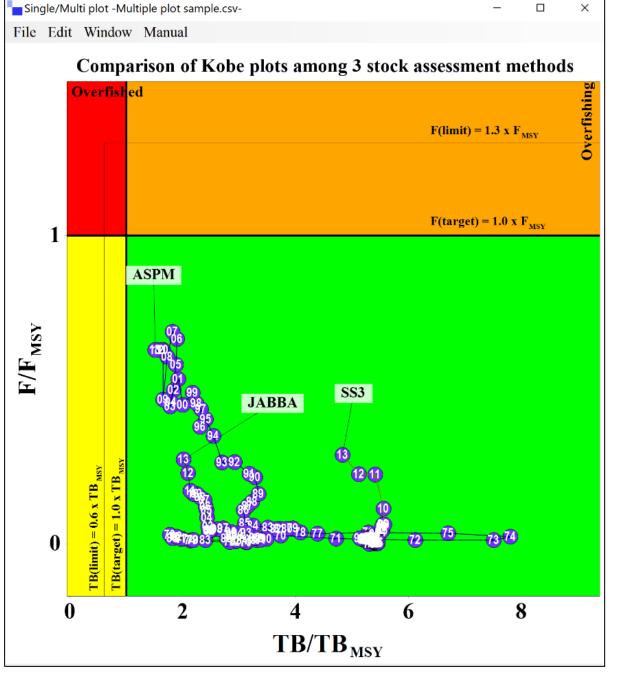



Kobe_I_II_Manager(ver6.2.1)(2024) Х Kobe I (Kobe plot) Single trajectory with a confidence surface Single or Multi trajectories (no confidence surface) Multiple comparisons among stock status points Back Kobe_I_II_Manager(ver6.2.1)(2024) \times Kobe II Strategic matrix is available in ASPIC_Manager and JABBA_Manager

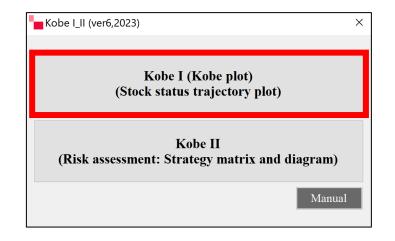
Concept

Kobe plot





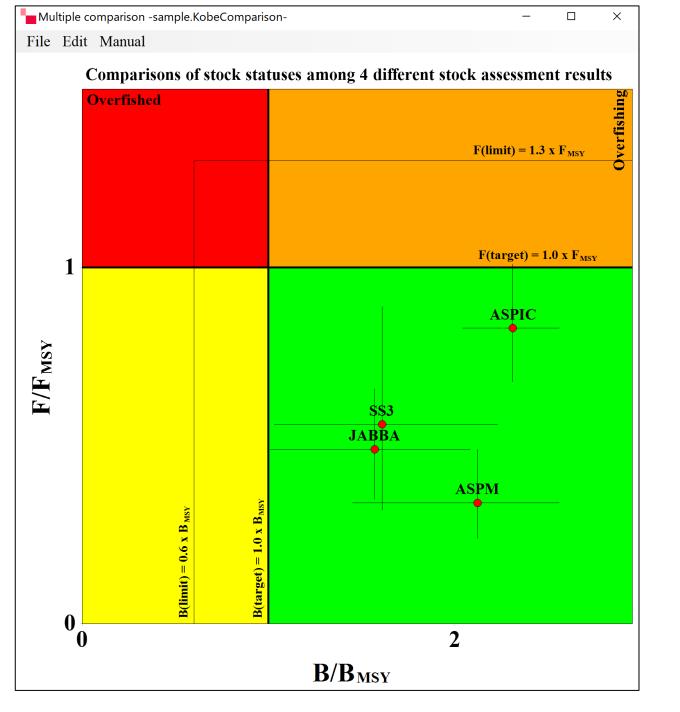
Graph settings to edit


Graph Settings		Graph Settings	
Points and lines Trajectory, confidence surfa	ace and phase	Points and lines Trajectory, confidence surfa	ce and phase
Select Years to Display 1st Year: 1955 955 Years 1956 1960 1957 1961 1958 1962 1958 1967 1958 1967 1958 1967 1958 1967 1958 1967 1958 1967 1958 1962 1957 1961 1958 1962 1957 1967 1958 1962 1967 1971 1958 1962 1967 1971 1958 1962	Title Kobe plot Font Size: 18 B Limit Reference Point X(%): 0.6 C X: TB(limit) = 0.6 x TBmsy	Trajectory Line Color Width 2 \$ Style Arrow . ✓ Show Plot Points Style Circle . ✓ Show Confidence Surface	Phase color Line width of XY axis Color: Width: 5 Style: Solid · Phase name Label Overfished Horizontal ·
Title Min. Max. Increment X: TB/TBmsy -0.25 4.23 1 Y: F/Fmsy -0.37 2.1 1 Font Size: 20 B Reset Change titles of XY axis to other names Image: Size in the	Y(%): 1.3 Y: $F(limit) = 1.3 \text{ x Fmsy}$ Color: Width: 1 $Style:$ Solid $Font Size:$ 10 B B	 ✓ Snow Contour Labels ✓ 5% ✓ 25% ✓ 95% ✓ 50% Font Size: 9 B 	 ✓ Overfishing ✓ Overfishing ✓ Vertical ✓ Recovering Horizontal ✓ Safe zone Horizontal ✓ Font Size:
X: Mark Mark Size: 10 Font Size: 10 B Color:	Target Reference Point X(%): 1.0 Y(%): 1.0 Y: F(target) = 1.0 x TBmsy Y: F(target) = 1.0 x Fmsy Color: Width: Image: Solid Image: Solid Font Size: 10 Image: Solid Image: Solid	Font Size: $\mathbf{P} \cdot \mathbf{B} \cdot \mathbf{B}$ Show PieChart(% Composition of 4 phases) Font Size: $10 \cdot \mathbf{B} \cdot \mathbf{B}$ Align confidence surface X: $0.02 \cdot \mathbf{Y}$: $0.00 \cdot \mathbf{G}$ (3)	Default font name: Times New Roman Subscript MSY position alignment Axis Label: X: LRP Name: X: TRP Name: X: -20 Y: 0 TRP Name: X: -20 Y: 0 Axis -18 Y: 0 Y: 0
	OK Cancel		OK Cancel

Graph settings to adjust formats of the Plot (many functions are available to produce users' desired plot)

Graph Settings		Graph Settings			
Points and lines Trajectory, confidence surfa	ace and phase	Points and lines Trajectory and Phases			
Select Years to Display 1st Year: 1955 · 55¢ Years	Title	Select Scenarios to Display and the Line Colors.	Default font name: Times New Roman · Apply for all		
□ 1955 □ 1959 □ 1963 □ 1968 □ 1972 □ 1956 □ 1960 □ 1964 □ 1969 □ 1973 □ 1957 □ 1961 □ 1965 □ 1974 □ 1958 □ 1962 □ 1967 □ 1975	Font Size: 18 C B	Trajectory Line Width 2 Style Arrow	Subscript MSY position alignment Axis Label: X: -18 Y: LRP Name: X:		
Axis Axis Title Min. Max. Increment X: TB/TBmsy · -0.25 4.23 1 Y: F/Fmsy · -0.37 2.1 1	$X(\%)$:0.6 \updownarrow $Y(\%)$:1.3 \circlearrowright $Y(\%)$:1.3 \circlearrowright Y : $F(limit) = 1.3 \text{ x Fmsy}$ Color:Width:1 1 \bigcirc Style:Solid	Phase color Line width of XY axis Color: Width: 5 Style: Solid	TRP Name: X: -20 C Y: 0 C		
Font Size: 20 B Reset Change titles of XY axis to other names X: Y:	Font Size: 10 3 B D Target Reference Point Limit Reference Legend	Phase name Label Overfished Horizontal Overfishing Vertical			
Mark Mark Size: 10 C Mark Color:	$X(\%)$:1.0 \checkmark $TB(target) = 1.0 \text{ x TBmsy}$ $Y(\%)$:1.0 \checkmark Y : $F(target) = 1.0 \text{ x Fmsy}$ Color:Width:1 \heartsuit Style:Solid	Recovering Horizontal . Safe zone Horizontal . Font Size: 12 B			
	Font Size: 10 3 B OK Cancel		OK Cancel		

Kobe I_II (ver6,2023)	
Kobe I (Kobe plot)	


Single trajectory with a confidence surface

Single or Multi trajectories (no confidence surface)

Multiple comparisons among stock status points

Back

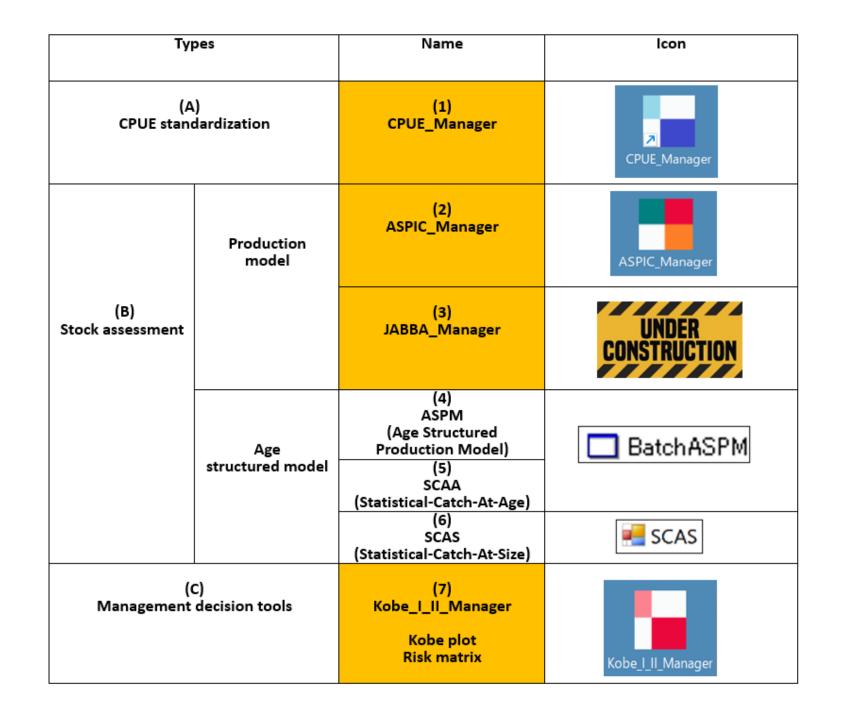
Х

Graph settings to adjust formats of the Plot (many functions available to produce users' desired plot)

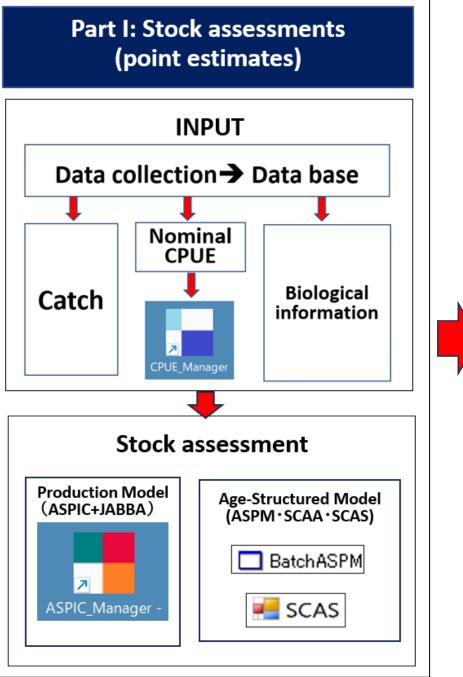
Graph Settings		Graph Settings	
Axis Title Min. Max. Increment	☑ Title	Points and lines Phases	
X: TB/TBmsy · 0 2.95 2 Y: F/Fmsy · 0 1.21 1	Comparisons among different stock assessments results Font Size: 18 3 B	Phase color	Default font name: Times New Roman Apply for all
Font Size: 20 B Reset Change titles of XY axis to other names X: Y:	 ✓ Limit Reference Point Limit Reference Legend ✓ X: SB(limit) = 0.6 x SBmsy 	Line width of XY axis Color: Width: 5 Style: Solid · Phase name Label	Subscript MSY position alignment Axis Label: X: -18 Y: -5 • LRP Name: X: -20 Y: 0 • TRP Name: X: -20 Y: 0 •
Label Select Data: SS3 · All Apply Center marker Color: Size: 5 Style: Circle ·	X(%): v	OverfishedHorizontal·OverfishingVertical·RecoveringHorizontal·	
Color: Width: 2 Color: Solid	✓ Target Reference Point Limit Reference Legend	Safe zone Horizontal · · Font Size: 12 3 B	
Color: Width: 1 Style: Solid	X(%): 1.0 ↓ ✓ X: SB(target) = 1.0 x SBmsy Y(%): 1.0 ↓ ✓ Y: F(target) = 1.0 x Fmsy		
Circle name Font Size: 12	Color: Width: 1 Style: Solid · Font Size: 10 B		

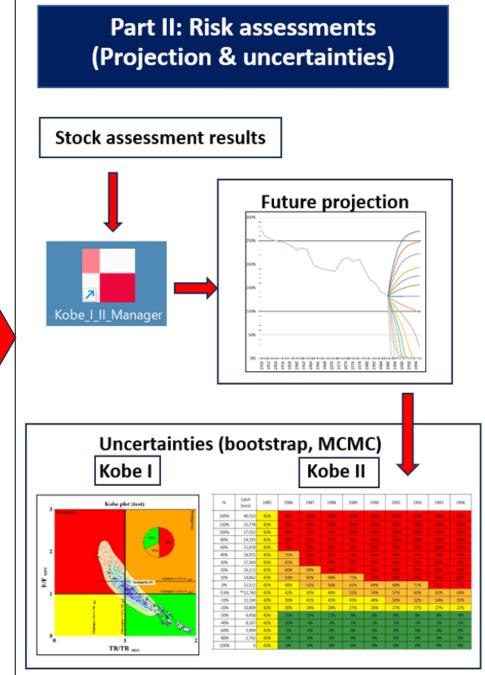
OK

Cancel


Contents (Part 1)

- (1) Background & Objectives
- (2) Outline
- (3) Menu-driven software
 - CPUE standardization
 - Stock and Risk assessment
 - Review
 - Production model (ASPIC and JABBA)
 - Age-Structured Models
 - Management decision making tool (Kobe I+II)


(4) <mark>Summary</mark>


[MENU] Menu-driven stock assessment software (7)

4 Manager series (all-in-one)

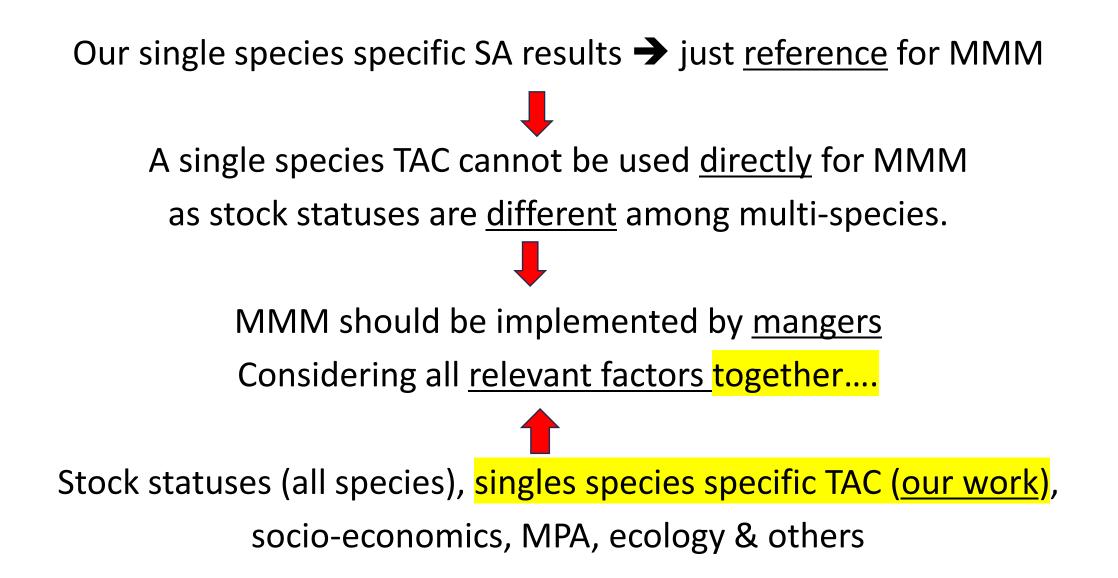
Procedure

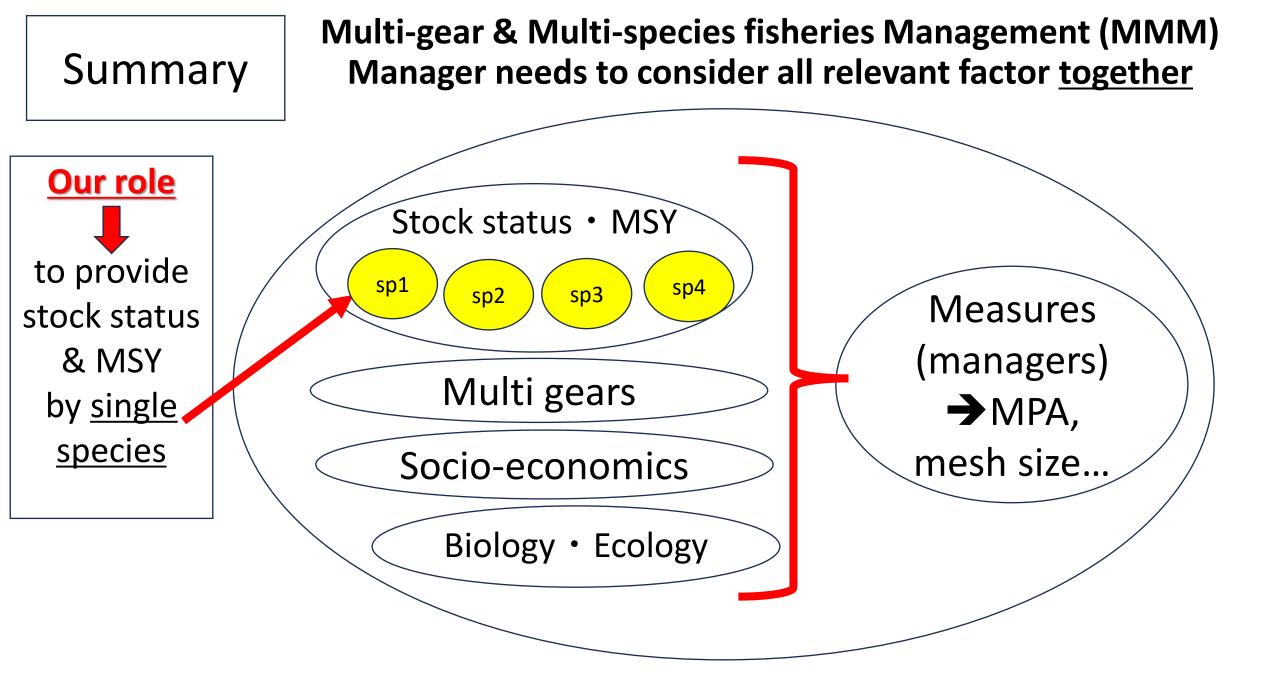
Important note (1) Multiple stock assessment

Try 2 or more SA with different structured (data) models

(PM, Age structured, data poor models....)

<u>Compare results</u>


If similar → <u>confident</u> to provide advice If different → check fitness → use SA results with <u>better</u> fitness (<u>less</u> confident, but still good references)



Need <u>Multi-gear & Multi-species fisheries Management</u> (MMM)

(Developing countries)

Our stock assessment \rightarrow <u>single</u> species <u>How</u> dose it help & incorporate to MMM?

Our ultimate goal

Stock assessments (SA) <u>for ALL</u> ☺
no more struggling for SA
No more only for SA experts

Acknowledgements

Terima kasih & Arigato gozaimasu

Drs Fayakun Satria, Lilis Sadiyah and Ririk Sulistyaningsih National Research and Innovation Agency

to help and organize this meeting !

Acknowledgements again! Fayakun Satria, lilis Sadiyah and Ririk Sulistyaningsih

Agus Budhiman	Dyah Retnowati	Khom Sakiro	Poppy Retno Andamari	Saraswati
Agustinus Widodo	Edwison Setya Firmana	Kusno Susanto	Prawira Atmaja Rintar	Satria Fayakun
Ali Suman	Fenni Eddrisea	Mahiswara	Reniwatenu	Saut Tampubolon
Bachtiar Gafa	Hari Eko Irianto	Mahiswara Sudardjo	Renny Wulansari	Subhat Nurhakim
Bram Setyadji	Hetty Priyanti Efendi	Muhamad Anas	Riana Handayani	Susiyanti
Budi Iskandar	Hety Hartaty	Mukti Zainuddin	Rista Devi Januar	Wudianto
Budi Nugraha	Imam Musthofa Zainudin	Nilanto Perbowo	Rudi Sujono	

From

Directorate General of Capture Fisheries (DGCF)

Research Institute for Tuna Fisheries (Bali)

Research Institute for Marine Fisheries (BPPL) (Muara Baru)

Research Center for Fisheries Management and Conservation (RCFMC)

Directorate of Fish Resources Management

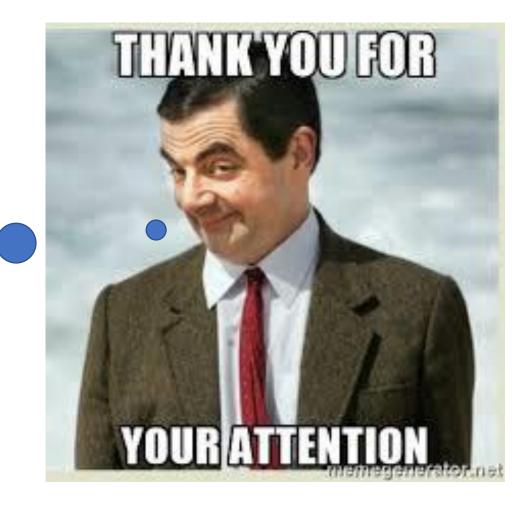
Ministry of Marine Affairs and Fisheries

Center for Data, Statistic and Information

Harini

Our ultimate goals Sustainable resources & fisheries (Indonesia)

Training & Collaborative works



Part 2 Training & Collaborative works (future)

If Indonesia is interested in Training & Collaborative works....

[MENU] can offer....

4-5 days training for 3 software
 → CPUE_Manager + ASPIC_Manager + Kobe I+II Manager
 October or November, 2024

JABBA_Manager will be in 2025

If OK, we will have collaborative works for <u>2</u> most important species to manage (Indonesia) using [MENU] software

For your information

Sri Lanka Pelagic (Spotted Sardinella & Indian Mackerel)Thailand Demersal (threadfin breams + Lizardfish)Fresh water (Carp)

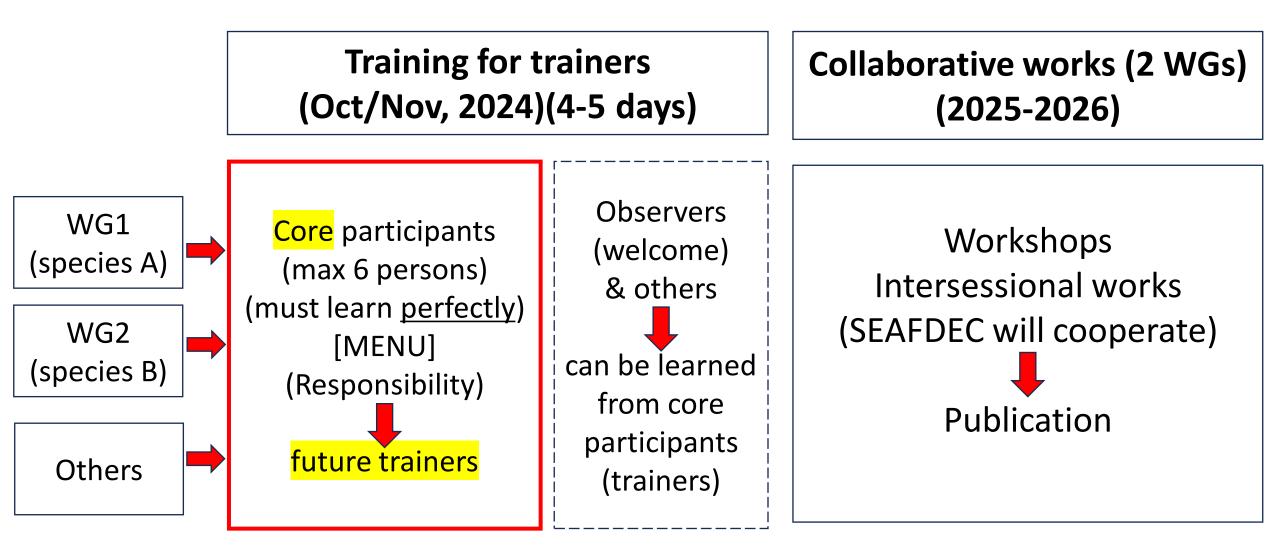
Why we need Collaborative works?

<u>**Practice</u>** using real data are much more important, meaningful and our Gool.</u>

This is a good opportunity to attempt important species (Indonesia)

Important conditions

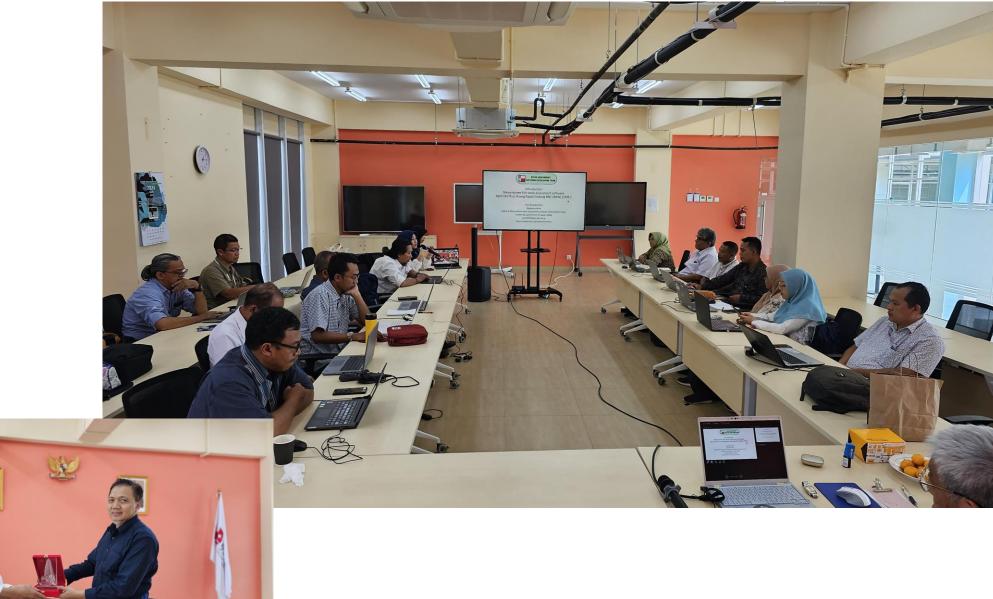
Need minimum 10 year data (catch and CPUE)


2 species WG (working Group) will be established Today or intersessionally Training for Trainers (1st step) Focus for 6 core participants

Training will be concentrated to 6 persons (from 2 WGs & others)

[MENU] will make sure that 6 persons learn perfectly

Core participants (trainers) can train others (future)


Trainings & Collaborative works (summary)

Appendix Participants

1. Dr. Erfind Nurdin, S.Pi., M.Si 2. Dr. Khairul Amri, S.Pi., M.Si 3. Moh Natsir, S.Pi, M.Si, Ph.D 4. Lilis Sadiyah, S.Si., Ph.D 5. Dr. Thomas Hidayat, A.Pi., M.Si 6. Dr. Tegoeh Noegroho, S.ST.Pi., M.Si 7. Drs. Karsono Wagiyo, M.Si 8. Umi Chodrijah, S.P., M.Si 9. Anthony Sisco Panggabean, S.Si., M.Si 10. Asep Priatna, S.Pi., M.Si 11. Prihatiningsih, S.Pi., M.Si 12. Duranta Diandria Kembaren, S.Pi., M.Si 13. Moh. Fauzi, S,Si., M.Si 14. Tirtadanu, S.Pi., M.F.Sc 15. Muhammad Taufik, S.T, M.Si 16. Andina Ramadhani Putri Pane, S.Pi, M.M. 17. Ririk Kartika Sulistyaningsih, S.Pi, M.App.Sc 18. Ralph Thomas Mahulette, S.Pi, M.Si 19. Nurulludin, S.St.Pi, M.Si 20. Pratiwi Lestari, S.Si., M.Si

