

Menu-driven software series (No. 1) CPUE_Manager (ver1.2.0) (2024) Manual

April 8, 2024

Tom NISHIDA (PhD) (Representative) aco20320@par.odn.ne.jp Kazuharu Iwasaki (Software Engineer) [MENU] Menu-driven stock assessment software developing team(Japan) https://www.esl.co.jp/products/menu

[MENU] is supported by Environmental Simulation Laboratory (Japan) © All copyrights and patents are reserved by [MENU]

Contents

Wa	arnings (copyright)	03				
Ac	ronyms	04				
1.	About: New CPUE_Manager	05				
2.	Requirements for PC and Important Remarks	06-08				
3.	Installation	09-14				
4.	[1 st menu] Quality Control (QC)	15-25				
5.	. <mark>[2nd menu]</mark> CPUE standardization					
	5.1 Why CPUE standardization is need?	27				
	5.2 Creating input data	28-30				
	5.3 Attributes of 3 covariates and nominal CPUE	31-39				
	5.4 Implementing CPUE standardization	40-41				
	5.4.1 Log normal model	42-64				
	5.4.2 Delta model (Zero inflated Delta 2 steps log normal GLM)	65-88				
6.	[3 rd menu] Creating one common standardized CPUE	89-95				
Ар	pendix A: History of development	96				

Warnings: Copyrights

© All copyrights and patents are reserved by [MENU] Menu-driven stock assessment software developing team

- (1) This software can be used only by those who had trainings by [MENU] (personal copy & personal use only).
- (2) Please don't give or sell copies to others.
- (3) Please don't inform the download link of this software to others.
- (4) If uses want to make reports and/or publish papers using this software, please get permission from [MENU] at <u>menu.soft.SEC@gmail.com</u>

ACRONYMS

ANOVA	Analysis of variance
ASPIC	A Stock-Production Model Incorporating Covariates
ASPM	Age-Structured Production Model
В	Total biomass or Spawning Stock Biomass
B _{MSY}	Total biomass or Spawning Stock Biomass at MSY
CI	Confidence Interval
CPUE	Catch Per Unit Effort
EST	Estimated
F	Fishing mortality
F _{MSY}	Fishing mortality at MSY
GLM	General Linear Model or Generalized Linear Model
GPS	Global Positioning System
ICCAT	International Commission for the Conservation of Atlantic Tunas
ΙΟΤΟ	Indian Ocean Tuna Commission
JABBA	Just Another Bayesian Biomass Assessment

LRP	Limit Reference Point
МСМС	Markov Chain Monte Carlo methods
MSY	Maximum Sustainable Yield
OBS	Observed
QC	Quality Control
RFMO	Regional Fisheries Management Organization
SA	Stock assessment
SAS	Statistical Analysis System
SB or SSB	Spawning Biomass or Spawning Stock Biomass
SB _{MSY} or SSB _{MSY}	Spawning Biomass or Spawning Stock Biomass at MSY
SPSS	Statistical Package for the Social Sciences
SRA	Stock Reduction Analysis
SS3	Stock Synthesis 3
ТВ	Total Biomass
ТВмзу	Total Biomass at MSY
TRP	Target Reference Point
Y/R	Yield per Recruit

1. About : New CPUE_Manager

- The new CPUE has 3 menus.
- The previous CPUE standardization was <u>one independent software</u>,
- It is now in the 2nd menu of the new CPUE_Manager

(1) Quality	y Control
(CPUE v	s. catch)
(2) CPUE sta	ndardization
Estimate single st	andardized CPUE)
3) Create one com	bined STD_CPUE
among mul	tiple ones

2. REQUIREMENTS FOR PC AND IMPORTANT REMARKS (1/3)

(1) Requirements for PC

- Operation System: MS window 10 or 11 and <u>NOT applicable for MAC (apple) PC</u>.
- 64bit PC.
- RAM: minimum 2GB.
- Basic software (Word, Excel and Notepad)
- R programming language for window (R-4.3.1-win) needs to be installed in advance. Its size is 80MB (zipped) and 180MB (unzipped).
- To make smooth operations, users need at least 30% of empty space of the hard disk.

2. REQUIREMENTS FOR PC AND IMPORTANT REMARKS (2/3)

(2) Important remarks (CPUE sample data)

This manual uses the sample excel data for demos (below). Users can use the sample data for

	Т											
>	PC	>	Windo	ws (C:)	>	ESL Software	>	CPUE_	Manager	>	CPUE Sample data	>
ũ	[])	Ċ	ÎIJ	∕↓	並べ替え ~	≣≣	表示 >	•••			
	(1) ((2) ((3) (QC CPUE Comb	standard vined CPU	lization JE								

In the past, albeit rare, excel files could not read under windows

driven by Indonesia & Malaysia languages.

In such case, change to the English window and/or make the same data by your PC.

2. REQUIREMENTS FOR PC AND IMPORTANT REMARKS (3/3)

(3) Other Important remarks

• Manual

This PowerPoint is the manual. Manul call button is available.

• Keep the original files (important)

Don't use original files. Make copies & use copies as work files like wk1, wk2, etc.

Operation by mouse

Manual explains operations based on "mouse".

For "touch panel" or "key board", follow corresponding manipulations.

• Save

Save files frequently.

- Engines (programs and applications) underpinning this software
- Microsoft Visual Studio (2019)
- Graphics: C# and. NetFrameWork4.7.2
- R-4.3.1-win (2023)

3. Installation (2 application)

Before installation, uninstall old versions

(1) CPUE_Manager

Please get the installation link from the [MENU] Secretariat at <u>menu.soft.SEC@gmail.com</u>

(2) R-4.3.1-win

Go to <u>https://cran.r-project.org/bin/windows/base/</u> Then download from <u>Download R-4.3.1 for Windows</u>

3. Installation: CPUE_Manager

Double click the zipped installer (located folder or desktop)

Users can get the download link of the software

from the [MENU] Secretariat at <u>menu.soft.SEC@gmail.com</u>

Installer (folder)

Installer (desktop)

3. Installation_CPUE_Manager: 4 steps

	\bigcirc		
CPUE_Manager(ver1.2.0)(2024)		CPUE_Manager(ver1.2.0)(2024)	\sim
Welcome to the CPUE_Manager Installation Program This program will install CPUE_Manager on your computer.	The destination folder does not exist. Do you want to create it?	Congratulations! The application has been successfully installed.	(4)
It is strongly recommended that you exit all programs before running this installation program.	はいた。 Litick::	The application has been successfully installed.	
Click Next to continue the installation. Click Cancel to quit the installation program.		Olick the registered icen to start the installed program	
	If destination folder "ESL software" exits, this window will not appear.	Circk the registered icon to start the installed program.	
WARNING: This program is protected by copyright law and international treaties.			
Unauthorized reproduction or distribution of this program, or any portion of it is prohibited b			
Copyright (C) 2023 Environment Simulation Laboratory Co,Ltd.	PC > Windows (C:) > ESL Software >		
Kantan Installer Next Cancel	 □ <li< td=""><td>Kantan Installer</td><td>Finish</td></li<>	Kantan Installer	Finish
IPUE_Manager(ver1.2.0)(2024)			25
Check the Installation information Indicate the installation information such as the destination folder.	名則 更新日時 CPUE_Manager 2023/12/06 9:48		(F)
An application is installed by the next setting. When there is not a problem, please and Next. When I cancel installation, please click "cancel".	Users will get		
Destination Folder: C:\ESL Software\CPUE_Manager	the CPUE_Manager folder.		
Extra Menu: Create Shortcut on Desktop Create shortcut for all users		-	
4			
Kantan Installer Back Next Cancel			11
			11

3. Installation: Linking R to CPUE_Manager (2 ways) (1) Quality Control (see next slide #12) or (2) CPUE standardization (see slide # 13)

3. Installation : Linking R to CPUE_Manager from menu (1) Quality Control

Confirmation window

3. Installation

Linking R to CPUE_Manager from menu (2) CPUE standardization 改定

		-(4)	
C:¥Program F	iles¥R¥R-4.3.1¥bin¥x64	- C x64の検索	ز
レダー			≣・□
File r	name	更新日時	種類
p 🚯 R.dll		2023/06/16 9:26	アプリケーション拡張
C 🚯 Rblas.	dll	2023/06/16 9:27	アプリケーション拡張
🛚 🐻 Rgrap	happ.dll	2023/06/16 9:25	アプリケーション拡張
J 🚯 Riconv	ı.dll	2023/06/16 9:26	アプリケーション拡張
🔹 Rlapad	:k.dll	2023/06/16 9:30	アプリケーション拡張
	CPUE standardization(ver2.4.4)(2023) —	<i>₹</i> ,)

4. [1st menu] Data Quality Control (QC) : CPUE vs Catch

To check relations between CPUE vs. Catch if there are.... (a) Negative correlations & (b) Outliers

2 ways to do QC based on graphs:
(1) Eye-ball judgments and/or
(2) Statistical judgements
using Prediction Interval(PI)
(for example, 95% PI for predictions)

Method (2) will be explained here using menu (2)

4. [1 st menu] Data Quality Control (QC) Prepare the input data (excel or .csv)						
3 variables (year, CPUE, Catch)						
> PC > Windows (C:) > ESL Software > CPUE_Manager > CPUE Sample data > (1) QC > all point						
3 ◎						
QC(sample)						

	А	В	С	
1	year	CPUE	Catch	
2	1963	1052	10190	
3	1964	380	11258	
4	1965	240	8652	
5	1966	229	9349	
6	1967	278	9107	
7	1968	220	9172	
8	1969	197	9203	
9	1970	219	9495	
10	1975	350	8839	
11	1976	309	6696	
12	1977	337	6409	
13	1978	445	11835	
14	1979	316	11937	
15	1980	252	13558	
16	1981	231	11180	
17	1982	283	13215	
18	1983	222	14527	
19	1984	213	12791	
20	1985	203	14383	
21	1986	195	18486	
22	1987	177	20236	
23	1988	178	19513	
24	1989	171	17250	
25	1990	167	15672	

4. [1st menu] Data Quality Control (QC) Practice using the sample data → Import the QC(sample) excel file

4. [1st menu] Data Quality Control (QC) :Practice using the sample data Further QC without 1963

Make a new excel file, "QC(sample) no 1963"	Repeat the same operation as before.
without the 1963 data point	Then users get the new result
in the new "no 1963 folder"	in the word file (below).
▶ ager¥CPUE Sample data¥(1) QC¥no 1963 point ~ C no 1963 pointの検索 タ	···· Windows (C:) > ESL Software > CPUE_Manager > CPUE Sample data > (1) QC > no 1963 point
	▲ ① ↑ 並べ替え ~ 目目表示 ~ ···
 ▲ 名前 ● QC(sample) no 1963 ● 2023/10/17 14:39 ● Microsoft Excel ワ. 	QC(sample) no 1963 Result(QC(sample) no 1963)
20	
	See the next slide for the new graph
7ァイル名(N): QC(sample) no 1963	

22

4. [1st menu] Data Quality Control (QC) Practice using the sample data → Results

After removal of one outlier (1963)

RESULTS Negative CORR relation <u>is improved</u>, i.e., r2 increased (10% to 20%)

No need to remove the 1978 point as close to the 99% Confidence band.

Handling CPUE & catch data with outliers

Outliers mean that CPUE, catch or both are incorrect. But we don't know which ones are incorrect. Thus, we have 3 options.

(1) Both Catch & CPUE should not be used (conservative method)
(2) Use catch but don't use CPUE if users know catch data is reliable.
(3) Use CPUE but don't use catch if users know CPUE is reliable.

Decisions will be made by users as they know quality of the data.

QC for the original data set (catch and CPUE)

<u>This is not included in the 1st menu</u>. Thus users need to do it by themselves.

Original data set includes following variables (example)
 →year, month, day, boat name set, area (e.g. grid, fishing grounds), depth, catch, effort, CPUE, weather etc.

QC for the original data set (catch and CPUE)

Try standard QC methods

- Check outliers (catch, effort, CPUE, depth and others) (entry errors)
- Check ranges (e.g. if 1<=month<=12)
- Spatial check by mapping (e.g. if catch/effort is not from land)
- Check typos for names (e.g., boat, gear)
- Other ad hoc QC

5. [2nd menu] CPUE standardization

CPUE_Manager(ver1.2.0)(2024)

(1) Quality Control (CPUE vs. catch)

(2) CPUE standardization (Estimate single standardized CPUE)

(3) Create one combined STD_CPUE among multiple ones

X

5.1 Why we need CPUE standardization?

- Nominal (raw) CPUE
 - \rightarrow Bias \rightarrow not real abundance index \rightarrow not good for SA
- Major bias affected by → Y(Year), S(Season) & A(Area)
 <u>Other bias by → target, ENV, gear, vessel, skipper, mesh size, etc</u>.
 →Could be explained by YSA because biases are reflected by time & area
- Thus, 3 Covariates (=factors) (Year, Season & Area)
 OK as for crude CPUE standardization

5.2 Creating input data Input data (Excel or CSV) 3 Covariates and nominal CPUE

Covariates (independent variables)

- A: **YR** (year)
- B: S (season): Q (quarter), M (month) or S (Semi-annual)
- C: Area

Dependent (Response) variable

D: **CPUE** (nominal CPUE)

		А	В	С	D
		Year	Q	Area	Nominal CPUE
	1				(Kg/hour)
	2	2011	4	North	83.08
Example —	3	2011	4	North	48.00
•	4	2011	4	North	48.00
	5	2011	4	North	48.00
	6	2011	4	North	9.38
	7	2011	4	North	9.38
	8	2011	4	North	9.38

Remarks (important)

3 covariates are normally Year, Season and Area.

Year is essential as we need to estimate annual standardized CPUE.

However, we can use "mesh size", "boat size" (for example) instead of Season and/or Area, if they are not important (no significant).

5.2 Creating input data Why only 3 Covariates?

- (1) This software is for developing countries \rightarrow data are limited
- (2) Basic & general philosophy of menu-driven software
 - → simple for beginners and non-technical users
- (3) Year, season and area
 - \rightarrow likely cover other anomalies of q (to some extent)
 - (mesh size, boat size, targeting, ENV, skipper, gear, boat, etc.)
- (4) However, other covariates (see above) with strong statistical significances can be used instead of Season and/or Area if the situation is allowed.

	А	В	С	D
	Voor	0	Aroo	Nominal CPUE
1	rear	Q	Area	(Kg/hour)
2	2011	4		83.08
3	2011	4		48.00
4	2011	4		48.00
5	2011	4		48.00
6	2011	4		9.38
7	2011	4	•	9.38
8	2011	4		9.38

	А	В	С	D
	Voor	0	Aroo	Nominal CPUE
1	Tear	Q	Area	(Kg/hour)
2	2011	•	•	83.08
3	2011	•	•	48.00
4	2011	•	•	48.00
5	2011	•	•	48.00
6	2011	•	•	9.38
7	2011	•	•	9.38
8	2011	•	•	9.38

5.2 Creating input data Missing data Season & area(example) → use "•" Year→ skip (no data entry)

	А	В	С	D
	Year	Q	Area	Nominal CPUE
1				(Kg/hour)
2	2011	•	North	83.08
3	2011	•	North	48.00
4	2011	•	North	48.00
5	2011	•	North	48.00
6	2011	•	North	9.38
7	2011	•	North	9.38
8	2011	•	North	9.38

5.3 Attributes of 3 covariates and nominal CPUE Attributes 3 Covariates (year, Season & Area) & Nominal CPUE

Year : Western (Christian) year (AD) 2023, 1950
 If no data → skip (<u>don't</u> put missing value (.)

• Season : Month, quarter or semi-annual If no data → assign the missing values (.)

Area : 3 types (see slide 32-36 for details)
 If no data → assign the missing values (.)

• Nominal CPUE : See slide 37-40 for details

Remarks

Attributes on "Year, Season and Area" are explained here. If other covariates (e.g., mesh size, boat size) instead of Season and/or Area are used, their attributes need to consider ad hoc basis separately. 31

5.3 Attributes of 3 covariates and nominal CPUE Area (3 types)

(1) Grids, (2) Fishing grounds and (3) Landing sites

by preferable order

Because more pin-pointed anomalies can be reflected in CPUE standardization

5.3 Attributes of 3 covariates and nominal CPUE Area (3 types) : Habitat area

Habitat area should be used

→ Area (e.g. grids, fishing grounds) at least 1 catch in past

If area is larger than the habitat area
→many 0 catch (not realistic) → bias

5.3 Attributes of 3 covariates and nominal CPUE: Area (3 types) (1) Grid (lat/long) : Fine scale → better as more pin-pointed anomalies can be reflected in CPUE standardization

Coarse scale grid

Fine scale grid

5.3 Attributes of 3 covariates and nominal CPUE Area (3 types)(2) Fishing grounds: finer is better (same reason)

Thailand Gulf of Thailand (area 1 \sim 5, A and B) and Andaman Sea (area 6,7 and C \sim F)

5.3 Attributes of 3 covariates and nominal CPUE: Area (3 types)
(3) Landing sites → should represent the fishing grounds [Type A]
[Type B] should not be used.

36
5.3 Attributes of 3 covariates and nominal CPUE Nominal CPUE (data set)

Time scale

finer scale better → more pin-pointed (plausible) anomalies can be reflected in CPUE standardization

By preferable order "set by set", "daily by boat", "daily (aggregated)", "monthly", "Quarterly", and "Semi-annual". 5.3 Attributes of 3 covariates and nominal CPUE Important note : Nominal CPUE (data set)

0 (zero) catch (CPUE) data should be included

Don't use vertical data set (below). If 0 catch is included → OK

5.3 Attributes of 3 covariates and nominal CPUE Important note : Nominal CPUE (data set)

0 (zero) catch (CPUE) data should be included

Use vertical data set (below) \rightarrow all catch (incl. 0) (all species) presented

5.4 Implementing CPUE standardization

5.4 Implementing CPUE standardization

This software uses 2 models for CPUE standardization depending upon 0 catch (CPUE) rate(below).

0 catch rate (%)	Model	Short name	Details (Manual)
0% \sim 30%	Log normal GLM	Log normal model	Section 5.4.1
30% \sim	Zero (0) inflated Delta	Delta model	Section 5.4.2
	2 steps log normal GLM		

The software will automatically let users inform 0 catch rates and corresponding model after users start the menu (2).

5.4.1 Implementing CPUE standardization

Log normal GLM

5.4.1 Implementing CPUE standardization log normal GLM

5.4.1 Implementing CPUE standardization (log normal GLM): 1st window

Note: Selection of covariates (for details, refer to the Manual)

5.4.1 Implementing CPUE standardization (log normal GLM) ① Sample size (n=)

If sample size is not enough (n < 10), follow suggestions as below:

If year(n) < 10

→ Better not conduct "CPUE standardization" nor " stock assessment"

If year(n) \geq 10 and n < 10 (2 other covariates) \rightarrow Change to larger category

For example, in case of Season (month) & Area (5 areas) If month(n) < 10 → Change to Quarter If 5 areas(n) <10 → change to 3 areas so that enough sample sizes can be secured.

For other covariates, use the similar approaches.

5.4.1 Implementing CPUE standardization (log normal GLM) ③ Selection of GLM model by 0 catch rate

0 catch rate (%)	Model	Short name
0% \sim 30%	Log normal GLM	Log normal model
30% \sim	Zero (0) inflated Delta 2 steps log normal GLM	Delta model

5.4.1 Implementing CPUE standardization (log normal GLM) ④ Selection of covariates (1/3)

3 Covariates \rightarrow year and 2 other covariates

Y(year) is the essential covariate to estimate annual CPUE standardization

2 other covariates

Normally "Season (e.g., month, quarter)" & "Area (e.g., fishing grounds, stat area) But other covariates (e.g., mesh size, boat size) can be used if season and/or area not considered to be important.

Why only 2 covariates?

→ Because this soft is mainly used in the developing countries where data are limited.

5.4.1 Implementing CPUE standardization log normal GLM ④ Selection of covariates (2/3)

Selection of covariates according to <u>the situation of missing values using season</u> & area (example)

Y(year) → Always selected (masked) (to estimate annual standardized CPUE)

If users have other covariate names (e.g., mesh size, boat size), the same are applied.

5.4.1 Implementing CPUE standardization(log normal GLM) ④ Selection of covariates (3/3)

Y(year) related interaction (e.g., year*month & year*area) → NO need Because interpretations are difficult due to complex situation (see 2 reference papers).

Hinton & Maunder (2004) → invalid
Maunder & Punt (2004)
Identifying significant interactions with year
no need (impossible to explain)

5.4.1 Implementing CPUE standardization(log normal GLM) : Steps

5.4.1 Implementing CPUE standardization(log normal GLM) : Process error

Users will see "Process error" message (below) if input data has some problems. In such case, follow the instruction and re-try again.

5.4.1 Implementing CPUE standardization(log normal GLM) In case of non-response after clicking Create OUTPUT

If, after 'Importing data' & 'Run' has been completed successfully, <u>no responses</u> from 'Create OUTPUT' even after clicking, then reduce the number of covariates until 'Create OUTPUT' works. This will happen if sample sizes are too small for some covariates.

CPUE_Manager(ver1.2.0)(2024) — 🗆 🗙	CPUE_Manager(ver1.2.0)(2024) — X
CPUE standardization	CPUE standardization
Rdll Path C:¥Program Files¥R¥R-4.3.1¥bin¥x64¥ Import the data Run Create OUTPUT GLM completed. please click 'create output'	Rdll Path C:¥Program Files¥R¥R-4.3.1¥bin¥x64¥

5.4.1 Implementing CPUE standardization (log normal GLM) : result files

>		ESL Sof	tware >	CPUE_Manager	>	CPUE Sample data	>	(2) CPUE standardization	>	GLM
Ô	A) 6		↑↓ 並べ替え ~	=	≣表示 ∽ •••				
	K GLN Res Res Res Res	И(sample) ult(all)(GLN ult(data)(С ult(sample	M(sample))(G GLM(sample) e size)(GLM(s	GLM))(GLM) sample))(GLM)						

5.4.1 Implementing CPUE standardization(log normal GLM):OUTPUT

Output	Results	Contents	Туре	File name
file #				
(1)	① Sample size of covariates	Year, season, area,	Data	
		and interaction		🛯 Result(sample size)(Sample)(GLM)
		(season*area)		
(2)	① Standardized CPUE	Standardized CPUE		
	(Original scale)	and 95% CI with		Result(data)(Sample)(GLM)
	② Standardized CPUE	nominal CPUE		
	(Scaled as average values =1)			
(3)	① 0 (zero) catch rate	% freq. distribution of	Graphs	
		nominal CPUE with 0		Result(all)(Sample)(GLM)
		catch rate		
	② ANOVA Table	Statistical test for	Table	
	(Analyses Of Variances)	model & covariates		
	③ Standardized CPUE	Standardized CPUE	Graphs	
	Real values and Scaled	and 95% CI with		
	(Average values =1)	nominal CPUE		
	④ Residual analyses	To test suitability of		
	Histogram and QQ (Quantile-	GLM using the error		
	Quantile) plot	distribution		
1	1		1	1

5.4.1 Implementing CPUE standardization (log normal GLM):OUTPUT (1) Sample size (Covariates)

Result(sample size)(Sample)(GLM)

Α	В	С	D	E
Area	Sample size (n=)			
NTS	3,291			
STS	772			
< >	Year Month	Area	Month x A	Area

	٨		6		А	В	C	D
1	A	B Sampla siza (n=)	L	1	Month	Sample size (n=)		_
1	rear 2011	Sample size (n=)		2	1	297		
2	2011	60		2	2	242		
3	2012	48		5	2	242		
4	2013	86		4	3	297		
5	2014	310		5	4	296		
6	2015	533		6	5	294		
7	2016	518		7	6	266		
8	2017	499		8	7	313		
9	2018	514		9	8	417		
10	2019	447		10	9	413		
11	2020	60		11	10	389		
12	2021	202		12	11	475		
13	2022	257		13	12	364		
14	2023	529		14				
15				15				
16				16				
17				17				
<	< >	Year Month	Area	10	ith X Area	Year Month Are	ea Mo	nth x Area

	А	В	С	D	E
1	Month*Aroa	Sample	size(n=)		
2	Wonth Area	Ar	ea		
3	Month	NTS	STS		
4	1	244	53		
5	2	186	56		
6	3	223	74		
7	4	212	84		
8	5	213	81		
9	6	201	65		
10	7	252	61		
11	8	327	90		
12	9	344	69		
13	10	341	48		
14	11	429	46		
15	12	319	45		
16					
<	> Year	Month	Area	Month x	Area

5.4.1 Implementing CPU standardization (log normal GLM): Output

(2) Standardized CPUE with its 95% CI (Confidence Interval) and nominal CPUE

> numerical results 2 sheet (excel)

		А	В	С	D	E
ization			Observed	Estimated	Lower boundary of	Upper boundary of
	1		(nominal) CPUE	(standardized) CPUE	95% CI (2.5%)	95% CI (97.5%)
	2	2011	6.20	4.97	3.66	6.69
	3	2012	9.98	7.95	5.73	10.95
	4	2013	10.18	5.02	3.90	6.44
	5	2014	4.77	4.91	4.30	5.60
Original	6	2015	5.61	5.80	5.25	6.40
Onginar	7	2016	5.98	6.40	5.79	7.07
scale	8	2017	7.55	6.41	5.78	7.09
	9	2018	4.66	4.78	4.31	5.30
	10	2019	3.37	3.61	3.21	4.04
	11	2020	6.20	4.97	3.66	6.69
	12	2021	3.18	2.68	2.23	3.19
	13	2022	8.52	7.61	6.61	8.75
	14	2023	3.35	3.72	3.35	4.12
	15					
	<	< >	Original scale	Scaled CPUE (Ave=1)	+	

		А	В	С	D	E
			Observed	Estimated	Lower boundary of	Upper boundary of
	1		(nominal) CPUE	(standardized) CPUE	95% CI (2.5%)	95% CI (97.5%)
	2	2011	1.01	0.94	0.82	1.06
	3	2012	1.63	1.50	1.29	1.73
	4	2013	1.66	0.95	0.88	1.02
	5	2014	0.78	0.93	0.97	0.88
Caslad	6	2015	0.92	1.10	1.18	1.01
Scaled	7	2016	0.98	1.21	1.30	1.12
20	8	2017	1.23	1.21	1.30	1.12
as	9	2018	0.76	0.90	0.97	0.84
Ave=1	10	2019	0.55	0.68	0.72	0.64
////	11	2020	1.01	0.94	0.82	1.06
	12	2021	0.52	0.51	0.50	0.50
	13	2022	1.39	1.44	1.49	1.38
	14	2023	0.55	0.70	0.75	0.65
	15	Average	1	1	1	1
	16					
	<	>	Original scale Scal	ed CPUE (Ave=1) +		:

Result(data)(Sample)(GLM)

5.4.1 Implementing CPUE standardization (log normal GLM)(3) Output : Report (word) file

Result(all)(Sample)(GLM)

- ① % frequency distribution of 0 (zero) catch (CPUE) and % of 0 catch (CPUE)
- 2 ANOVA Table
- ③ Trends of 4 annual CPUE (nominal, standardized and its 95% CI)
- ④ Evaluation of log normal GLM model

(2 Residual analyses by histogram and QQ plots)

5.4.1 Implementing CPUE standardization (log normal GLM) (3) Output : Report (word) file

% frequency distribution of nominal CPUE Red bar 0 CPUE (catch) rate

if < 30%, use log normal GLM model

5.4.1 Implementing CPUE standardization (log normal GLM)

2 ANOVA Table

if Pr. < 0.05 for model & all covariates (significant) use log normal GLM

Otherwise (non-significant) →use nominal CPUE

ANOVA (Analysis Of Variance) Table for log normal GLM to test statistical significances on nominal CPUE										
Adjusted R ² = 0.05										
Sources	df1	df2	Type III SS (Sum of Square)	Mean Square	F (test statistic)	<a:probabaility (="">F) (*)</a:probabaility>				
Model	12		243.29	20.27	17.70	0.000				
Year	12		243.29	20.27	17.71	0.000				
Error		4,050	4,637.70	1.15						
df Degrees of Freedom (*) Yellow marker Indicates α < 0.05 (5%) Probability F(df1,df2)										
F(df1,df2) F probability density 0 $F_{\alpha}(df1,df2)$										
			Degree of Fre	edom						

(<u>3</u>) Annual trends

Nominal CPUE and Standardized CPUE with 95% CI

5.4.1 Implementing CPUE standardization (log normal GLM): Output

④-1 Evaluation of log normal GLM model (Residual analyses)

> if Bell shape model is OK

if not, change model

5.4.1 Implementing CPUE standardization (log normal GLM): Output

5.4.2 Implementing CPUE standardization (Delta model)

Zero inflated Delta 2 steps log normal GLM

5.4.2 Implementing CPUE standardization (Delta model)

This software uses 2 models for CPUE standardization depending upon 0 catch (CPUE) rate(below).

0 catch rate (%)	Model	Short name	Details (Manual)
0% \sim 30%	Log normal GLM	Log normal model	Section 5.4.1
30% \sim	Zero (0) inflated Delta	Delta model	Section 5.4.2
	2 steps log normal GLM		

The software will automatically let users inform 0 catch rates and corresponding model after users start the menu (2).

5.4.2 Implementing CPUE standardization(Delta model)

5.4.2 Implementing CPUE Remarks standardization (Delta model) If users use this software at the 1st time, Importing the nominal CPUE data set the window requests users to link R language to this software, will appear. In such case, follow steps explained in Slide # 14. CPUE Manager(ver1.2.0)(2024) (1) Quality Control CPUE_Manager(ver1.2.0)(2024) Х (CPUE vs. catch) **CPUE** standardization (2) CPUE standardization (Estimate single standardized CPUE) -R.dll Path C:¥Program Files¥R¥R-4.3.1¥bin¥x64¥ (3) Create one combined STD CPUE among multiple ones Create Import Run the data OUTPUT Manual R software is found.

5.4.2 Implementing CPUE standardization (Delta model): 1st window

5.4.2 Implementing CPUE standardization (Delta model) ① Sample size (n=)

If sample size is not enough (n < 10), follow suggestions as below:

If year(n) < 10

→ Better not conduct "CPUE standardization" nor " stock assessment"

If year(n) \geq 10 and n < 10 (2 other covariates) \rightarrow Change to larger category

For example, in case of Season (month) & Area (5 areas) If month(n) < 10 → Change to Quarter If 5 areas(n) <10 → change to 3 areas so that enough sample sizes can be secured.

For other covariates, use the similar approaches.

5.4.2 Implementing CPUE standardization(Delta model) ③ Selection of GLM model by 0 catch rate

0 catch rate (%)	Model	Short name
0% \sim 30%	Log normal GLM	Log normal model
30% \sim	Zero (0) inflated Delta 2 steps log normal GLM	Delta model
5.4.2 Implementing CPUE standardization (Delta model) ③ Selection of GLM model by 0 catch rate

Frequency distributions (like below)→ do not use. but never happened in the past (16 years)

5.4.2 Implementing CPUE standardization(Delta model) ④ Selection of covariates (1/3)

3 Covariates \rightarrow year and 2 other covariates

Y(year) is the essential covariate to estimate annual CPUE standardization

2 other covariates

Normally "Season (e.g., month, quarter)" & "Area (e.g., fishing grounds, stat area) But other covariates (e.g., mesh size, boat size) can be used if season and/or area not considered to be important.

Why only 2 covariates?

→ Because this soft is mainly used in the developing countries & data is limited.

5.4.2 Implementing CPUE standardization (Delta model)

④ Selection of covariates (2/3)

Selection of covariates according to <u>the situation of missing values using season</u> & area (example)

Y(year) → Always selected (masked) (to estimate annual standardized CPUE)

If users have other covariate names (e.g., mesh size, boat size), the same are applied.

5.4.2 Implementing CPUE standardization(Delta model) ④ Selection of covariates (3/3)

Y(year) related interaction (e.g., year*month & year*area) → NO need Because interpretations are difficult due to complex situation (see 2 reference papers).

Hinton & Maunder (2004) → invalid
Maunder & Punt (2004)
Identifying significant interactions with year
no need (impossible to explain)

5.4.2 Implementing CPUE standardization (Delta model): Steps

5.4.2 Implementing CPUE standardization (Delta model): 3 outputs

Output	Results	Contents	Туре	File name
file #				
(1)	 Sample size of covariates 	Year, season, area, and	Data	
		interaction		Result(sample size)(Sample)(Delta)
		(season*area)		
(2)	① Standardized CPUE	Standardized CPUE and		
	(Real values)	95% CI with nominal		Result(data)(Sample)(Delta)
	② Standardized CPUE	CPUE		
	(Scaled as average =1)			
(3)	① 0 (zero) catch rate	% freq. distribution of	Graph	
		nominal CPUE with 0		
		catch rate		
	② Two ANOVA Tables	Statistical tests for	Tables	
	(Analyses Of Variances)	a) delta (O CPUE)		Result(all)(Sample)(Delta)
		model.		
		b) log normal GLM &		
		covariates (non 0		
		CPUE data)		
	③ Standardized CPUE	Standardized CPUE and	Graphs	
	Real values and Scaled	95% CI with nominal		
	(As average=1)	CPUE		
	④ Residual analyses	To evaluate delta model		
	(Histograms and QQ plot)	and log normal GLM		
		(non-zero CPUE data)		

5.4.2 Implementing CPUE standardization (Delta model): Output (1) Sample size (Covariates)

Result(sample size)(Sample)(Delta)

	А	В	С	D	E				
1	Area	Sample size (n=)							
2	NTS	6,172							
3	STS	3,693							
4									
-									
<	$\langle \rangle$	Year Month	Area	Month x A	Area				

	А	В	С		А	В	С	D	1		N4- +++ * 4 +	Samples	size(n=)		
1	Year	Sample size (n=)		1	Month	Sample size (n=)			2	2	wonth*Area	Area			
2	2009	333		2	1	840			3	3	Month	NTS	STS		
3	2010	825		3	2	689			4		1	566	274		
4	2011	326		4	3	831			5		2	399	290		
5	2012	390		5	4	806			6		3	518	313		
6	2013	467		6	5	698			7		4	469	337		
7	2014	685		7	6	638			8		5	387	311		
8	2015	921		8	7	741					5	207	272		
9	2016	850		9	8	895			9	'	6	366	272		
10	2017	768		10	9	988			10	0	7	439	302		
11	2018	811		11	10	974			11	1	8	557	338		
12	2019	771		12	11	928			12	2	9	644	344		
13	2020	679		12	12	827			13	3	10	609	365		
14	2021	787		13	12	637			1		11	660	250		
15	2022	603		14					14	4	11	009	259		
16	2023	649		15					1	5	12	549	288		
17				16					16	6					
		Year Month	Area	17	on on Anea	Year Month Are	a Mon	ith x Area	1-	<	> Year	Month	Area	Month x	Area

5.4.2 Implementing CPUE standardization (Delta model): Output

Scaled

as

Ave=1

(2) **Standardized CPUE** with its 95% CI (Confidence Interval) and nominal CPUE

Numerical results 2 sheet (excel)

Result(data)(Sample)(Delta) X

		А	В	С	D	E
			Observed	Estimated	Lower boundary of	Upper boundary of
	1		(nominal) CPUE	(standardized) CPUE	95% CI (2.5%)	95% CI (97.5%)
	2	2009	3.61	1.60	1.41	1.82
	3	2010	3.16	1.57	1.43	1.71
	4	2011	1.14	0.26	0.18	0.36
	5	2012	1.23	0.19	0.13	0.27
	6	2013	1.87	0.32	0.24	0.44
	7	2014	2.16	0.63	0.55	0.72
Original	8	2015	3.25	0.95	0.86	1.05
	9	2016	3.64	1.25	1.13	1.38
scale	10	2017	4.91	1.99	1.80	2.20
	11	2018	2.96	1.59	1.44	1.75
	12	2019	1.96	0.90	0.81	1.00
	13	2020	2.23	0.69	0.61	0.79
	14	2021	3.92	1.30	1.18	1.43
	15	2022	5.03	1.75	1.57	1.94
	16	2023	5.84	2.36	2.14	2.61
	17					
	10	< >	Original scale	Scaled CPUE (Ave=1)	+	

	А	В	С	D	E
		Observed	Estimated	Lower boundary of	Upper boundary of
1		(nominal) CPUE	(standardized) CPUE	95% CI (2.5%)	95% CI (97.5%)
2	2009	1.15	1.38	1.36	1.40
3	2010	1.01	1.35	1.39	1.32
4	2011	0.36	0.22	0.18	0.28
5	2012	0.39	0.16	0.13	0.20
6	2013	0.60	0.28	0.23	0.34
7	2014	0.69	0.54	0.53	0.55
8	2015	1.04	1.04 0.82		0.81
9	2016	1.16	1.16 1.08		1.07
10	2017	1.57		1.74	1.70
11 _	2018	0.95	1.37	1.39	1.35
12	2019	0.63	0.77	0.78	0.77
13	2020	0.71	0.60	0.59	0.61
14	2021	1.25	1.12	1.14	1.10
15	2022	1.61	1.51	1.53	1.49
16	2023	1.87	2.04	2.07	2.01
17	Average	1	1	1	1
10					
<	>	Original scale Scal	ed CPUE (Ave=1) +		:

5.4.2 Implementing CPUE standardization (Delta model) : Output

(3) Report (word) file

- \oplus % frequency distribution of 0 (zero) catch (CPUE) and % of 0 catch (CPUE)
- ② ANOVA Table
- ③ Trends of 4 annual CPUE (nominal, standardized and its 95% CI)
- ④ Evaluate model suitability (3 residual analyses)
 - -2 histogram analyses for log normal GLM & Delta model
 - -QQ plot for log normal GLM

5.4.2 Implementing CPUE standardization (Delta model) Output(3) Report (word) file

5.4.2 Implementing CPUE standardization (Delta model) Output(3) Report (word) file

 2 ANOVA Table (a) if Pr < 0.05 for all covariates (significant)
 use Delta model

Otherwise (No 0 CPUE affect) → skip 2nd step and use log normal GLM for original data including 0 catch

ANOVA (Analysis Of Variance) table for delta model to test statistical significances on 0 (zero) CPUE (1st step)										
	Adjusted	R ² = 0.38								
Source	$< \alpha$:Probabaility (> χ^2) (*)									
Year	14	1,368.40	0.000							
Month	11	179.62	0.000							
Area	1	179.97	0.000							
Month*Area	11	140.23	0.000							
Intercept (mean) 1 135.73 0.00										

5.4.2 Implementing CPUE standardization (Delta model) Output(3) Report (word) file

② ANOVA Table (b)

if Pr < 0.05 for model & all covariates (Significant) use log normal GLM

to test	ANOVA (Analysis Of Variance) Table for log normal GLM model to test statistical significances on positive (non zero) nominal CPUE (2nd step)											
	Adjusted R ² = 0.31											
Sources	Sources df1 df2 Type III SS (Sum of Square) Mean F (test statistic)											
Model	37		1,306.11	35.30	31.36	0.000						
Year	14		291.92	20.85	18.52	0.000						
Month	11		589.00	53.55	47.57	0.000						
Area	1		139.67	139.67	124.07	0.000						
Month*Area 11 285.52 25.96 23.06												
Error	Error 5,351 6,023.54 1.13											

[Note] (*) Yellow maker indicates $\alpha < 0.05$ (5%)

Annual trends

Nominal CPUE and Standardized CPUE with 95% CI

5.4.2 Implementing CPUE standardization (Delta model) Output(3) : Report (word) file

5.4.2 Implementing CPUE standardization (Delta model) Output(3): Report (word) file

5.4.2 Implementing CPUE standardization (Delta model) **Output(3) : Report (word) file**

0 0

Theoretical Quantiles

2

if not, change model

4

6. [3rd menu] Creating one common standardized CPUE

6. [3rd menu] Creating one common standardized CPUE

6. [3rd menu] Creating one common standardized CPUE
 If multiple CPUE is available, which CPUE should be used in production models,
 "One average CPUE" or "Multiple CPUE"? : Pros and Cons

	Multiple CPUE	Combined single CPUE
Pros	Consistent with the model setup	Model converges easily
	(assumptions)	
Cons	May not converged easily	Difficult to explain consistency
	because of complexity of the model	between model settings
		(assumptions) and CPUE

ASPIC → Difficulty in achieving convergence in the case of multiple CPUE due to lack of data and/or complexity as a simple model. Therefore, a combined CPUE (weighted average by catch) is often used as an alternative.

JABBA → Can handle better than ASPIC with technical treatments.

6. [3rd menu] Creating one common standardized CPUE Preparation of multiple CPUE & Catch data sets (see sample data below)

	CPUE1	Catch 1	CPUE2	Catch 2	CPUE3	Catch 3
2011	1.27	13128	1.14	24	•	454654
2012	2.04	9797	0.59	435	1.98	223
2013	•	2308	1.57	354	0.93	23243
2014	0.98	2987	0.62	76	•	8856
2015	1.15	4523	1.14	43534	1.16	64564
2016	1.22	243432	1.84	354	1.47	54645
2017		9879	1.88	445	0.91	4654564
2018	0.96	9898	0.88	34	0.66	675
2019	0.69	65465	•	3543	1.21	68787
2020	1.27	4567	1.10	5654	0.62	3432
2021	0.65	876786	1.39	6876	1.66	345
2022	1.75	25443	•	123	0.65	34534
2023	0.69	98	0.62	234432	1.21	788978

6. [3rd menu] Creating one common standardized CPUE Importing the data

Importing the sample data (3 CPUE/Catch data sets)

6. [3rd menu]

Creating one common standardized CPUE

Results (1st sheet) Weighted & scaled CPUE

/	PC	> vvii	iuows (C) /	ESE SUIT	wale 2	CPUE_				(3) Combined
)	<u>(A</u>])	R	Î	↑↓	並べ替え	~ ==	表示 >				
Ę	💵 Com 💵 Resi	nbined CP ult(Combi	UE(sample ned CPUE(e) (sample))(Combined	I CPUE)					
	A	в	С	D	E	F	G	Н	I	1	
1		CPUE1	Catch1	CPUE2	Catch2	CPUE3	Catch3	Weighted average CPUE by catch	Scaled CPUE (Ave=1)		
2	2011	1.27	13128	1.14	24		454654	1.27	1.16	_	
3	2012	2.04	9797	0.59	435	1.98	223	1.98	1.81		
4	2013		2308	1.57	354	0.93	23243	0.94	0.85		
5	2014	0.98	2987	0.62	76		8856	0.97	0.88		
6	2015	1.15	4523	1.14	43534	1.16	64564	1.16	1.05		
7	2016	1.22	243432	1.84	354	1.47	54645	1.27	1.16		
8	2017		9879	1.88	445	0.91	4654564	0.91	0.83		
9	2018	0.96	9898	0.88	34	0.66	675	0.94	0.85		
10	2019	0.69	65465		3543	1.21	68787	0.96	0.87		
11	2020	1.27	4567	1.10	5654	0.62	3432	1.04	0.95		
12	2021	0.65	876786	1.39	6876	1.66	345	0.66	0.60		
13	2022	1.75	25443		123	0.65	34534	1.12	1.02		
14	2023	0.69	98	0.62	234432	1.21	788978	1.07	0.98		
15								1.10	1.00		
16											
17			Oria	inal	date			Pac	ıl+ 1		
18				IIIdl	udla	t t		Rest	IL T		
19											
20											

6. [3rd menu] Creating one common standardized CPUE Results (2nd sheet) Graph for scaled average CPUE (weighted average by catch)

Appendix A: History of development

Туре	Version	Contents	Month, Year
	1.0	Original development	April, 2016
Menu-driven		(GLM based CPUE standardization)	
CPUE	1.1	Minor improvements of the output	June, 2016
standardization	1.2	(graphics and tables)	February, 2018
(specific) software	2.0	Additional function	May 2019
		(Log-normal GLM & 0 inflated Delta	
		2 steps log-normal GLM)	
	2.1	Improvements of the output	April, 2021
		(graphics and tables)	
New	1.0.0	Original development	August, 2023
CPUE_Manager	1.1.0	Minor improvement	September, 2023
(3 menus)	1.2.0	Upgraded	January, 2024
		New manual (PowerPoint)	

