Important Note (ASPIC)

It is strongly recommended to use JABBA, as it is theoretically much better than ASPIC, and much easier to use with the recently released JABBA_Manager menu-driven software (for details, see <u>comparisons below</u> & JABBA Manual). Thus, we don't maintain ASPIC_Manger anymore.

	JABBA	ASPIC (versions 2~5)
(1)	Estimation method (Bayesian approach based	on likelihood) used by JABBA is theoretically much better, more
Estimation	flexible & superior than the least squares (tract	ional) method used by ASPIC.
methods		
(2)	JABBA can estimate parameters much easily &	ASPIC needs a tedious grid (pin point) search (Batch job), which
Parameter	effectively in a short time by the Bayesian	sometimes produces incorrect parameters due to local (false)
estimation	approach with MCMC.	minima.
(3)	JABBA can accept any CPUE series. After the	ASPIC needs to check CPUE series if it is plausible in advance by
CPUE	run, implausible CPUE will be detected.	the data QC. Otherwise, it is difficult to get convergence.
(4)	Outliers can be found readily after runs by	Need to check outliers before runs. It may be difficult to detect
Outliers	inspecting residual plots.	outliers after run as no effective graphs as in JABBA.
(5)	JABBA theory is difficult & complicated. But it is	Theory is not difficult as for JABBA. But implementation by the
Theory	easy to implement if the menu-driven software	menu-driven software is not as easy nor effective as for JABBA.
	is used.	

Menu-driven software series (No. 2)

ASPIC_MANAGER (VER1.1.0) Manual

(March 2025)

Tom NISHIDA (PhD) (Representative) aco20320@par.odn.ne.jp Kazuharu Iwasaki (Software Engineer) [MENU] Menu-driven stock assessment software developing team(Japan) https://www.esl.co.jp/products/menu

[MENU] is supported by Environmental Simulation Laboratory (Japan) © All copyrights and patents are reserved by [MENU]

Contents

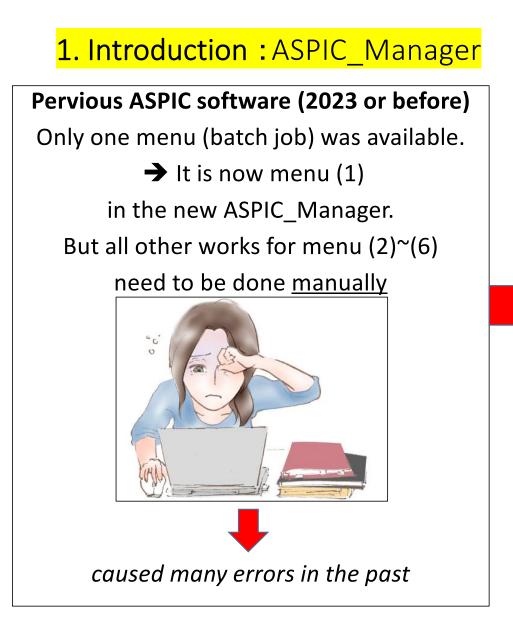
Important note (ASPIC)	01
Warnings (copyright)	04
Acronyms	05

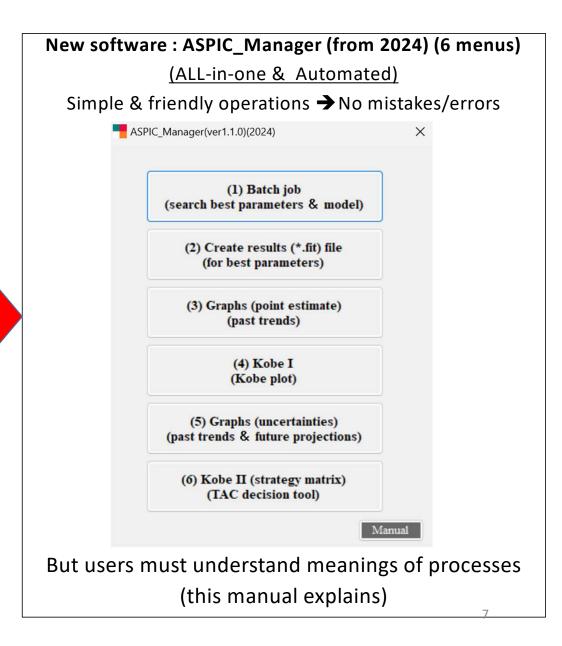
1.	Introduction	06-07
2.	Requirements for PC and Remarks	08-11
3.	Installation	12-18
4.	Running software (6 menus) (ASPIC_Manager)	- 19
	4.1 Batch job (Searching best parameters & model)	- 20-47
	4.2 Creating results (*.fit) file for best parameters & model	-48-51
	4.3 Graphs (Past trends for point estimates)	-52-57
	4.4 Kobe I (Kobe plot)	- 58-69
	4.5 Graphs (Past trends & future projections with uncertainties)	- 70-73
	4.6 Kobe II (Strategy matrix)(management decision tool)	
Ар	pendix A: History of development	- 82
Ар	pendix B: Output file (for 4.2)	-83-87

© All copyrights and patents are reserved by [MENU] Menu-driven stock assessment software developing team

- (1) This software can be used only by those who had trainings by [MENU] (personal copy & personal use only).
- (2) Please don't give or sell copies to others.
- (3) Please don't inform the download link of this software to others.
- (4) If uses want to make reports and/or publish papers using this software, please get permission from [MENU] at <u>menu.soft.SEC@gmail.com</u>

ACRONYMS


ASPIC	A Stock-Production Model	EST	Estimated	К	Carrying Capacity	SB _{MSY} or SSB _{MSY}	Spawning Biomass or
	Incorporating Covariates	F	Fishing mortality	LRP	Limit Reference Point		Spawning Stock Biomass at
ASPM	Age-Structured Production	FIT	To estimate	MCMC	Markov Chain Monte Carlo		MSY
	Model		(ASPIC Command)		methods	CDCC	
В	Total biomass or Spawning	F _{MSY}	Fishing mortality at MSY	MSY	Maximum Sustainable Yield	SPSS	Statistical Package for the
	Stock Biomass	GPS	Global Positioning System	OBS	Observed		Social Sciences
DMCV		ICCAT	International Commission	PT	Pella and Tomlinson	SRA	Stock Reduction Analysis
BMSY	Total biomass or Spawning		for the Conservation of	QC	Quality Control	SS3	Stock Synthesis 3
	Stock Biomass at MSY		Atlantic Tunas	RFMO	Regional Fisheries	STD	Standardized (CPUE)
во	Initial Biomass	ютс	Indian Ocean Tuna		Management Organization	SWO	Swordfish
вот	Bootstrap		Commission	RMS	Root Mean Square (Error)		
	(ASPIC Command)	IRF	Iteratively Reweighted Fit	SA	Stock assessment	ТВ	Total Biomass
СІ	Confidence Interval	10,000,000	(ASPIC Command)	SAS	Statistical Analysis System	TB _{MSY}	Total Biomass at MSY
CPUE	Catch Per Unit Effort	JABBA	Just Another Bayesian	SB or SSB	Spawning Biomass or	TRP	Target Reference Point
DOS	Disk Operation System		Biomass Assessment		Spawning Stock Biomass	Y/R	Yield per Recruit


1. Introduction Evolution of PM (Production Model)

				Features	i.				
			Equilibrium	Error	type				
Evolution old	Туре	Primnary author	Condition (EC) (death=increase) (un-reaistic)	Observation (data) error	Process (model) error	Bayesian (better) Approach	Comments		
old	Original PM	Shaeffer(1954), PT(1969) & Fox (1970)	YES				Classical (Not recommended to use due to EC)		
	ASPIC (Ver5.05)	Prager (2004)					Basic, standard & commonly used		
	ASPIC (ver7.5)	Prager (2017)	NO				among RFMOs & fishing countries		
new	JABBA (Just Another Bayesian Biomass Assessment)	Winker (2018)					Best but high standard (slowly expanding) Recommended		

(Note) PT: Pella and Tomlinson

→ This manual is for ASPIC_Manager to implement ASPIC(ver5.05) JABBA_Manager for JABBA → to be completed in 2024

2. REQUIREMENTS FOR PC AND REMARKS (1/4)

(1) Requirements for PC

- Operation System: MS window 10 or 11 and **NOT applicable for MAC (apple) PC.**
- 64bit PC.
- RAM: minimum 2GB.
- Basic software (Word, Excel and Notepad)
- R programming language for window (R-4.3.1-win) needs to be installed in advance. Its size is 80MB (zipped) and 180MB (unzipped).
- To make smooth operations, users need at least 30% of empty space of the hard disk.

2. REQUIREMENTS FOR PC AND REMARKS (2/4)

(2) Important remarks (sample data) (REVISED)

- This manual uses the sample data for demo.
- Users can use the sample data for practice

→ important: Use the data available folders corresponding to the menu.

• Location of the sample data (7 folders for 7 menus)

>	PC >	Windows (C:)	> E	ESL Software	>	ASPIC_I	Manager	>	ASPIC Sample data	>
lõ	<u>(]</u>)		↑↓ ±	並べ替え ~	≡≡	表示 >	•••			
	(3) Grapl (4) Kobe (5) Grapl (6) Kobe	n job e test.fit file hs (point estimates) I (kobe plot) hs (past-future)(und II (TAC matrix)		ies)						

2. REQUIREMENTS FOR PC AND REMARKS (3/4)

(2) Important remarks (continued)

Manual

This PowerPoint is the manual (REVISED). Manul call button is available in menus \rightarrow do not use (old version)

Keep the original files (important)

Don't use original files. Make copies & use copies as work files like wk1, wk2, etc.

Operation by mouse

This manual explains operations based on "mouse". For "touch panel" or "key board", follow corresponding manipulations.

Save

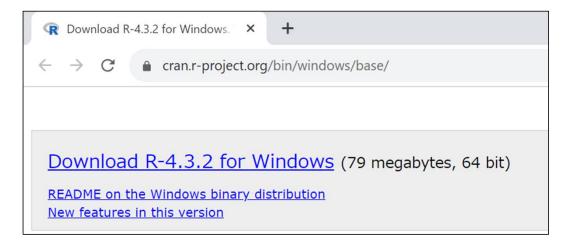
Save files frequently.

2. REQUIREMENTS FOR PC AND REMARKS (4/4)

- (2) Important remarks (continued)
- Engines (programs and applications) underpinning this software
- Microsoft Visual Studio (2019)
- Graphics: C# and. NetFrameWork4.7.2
- ASPIC Batch job (Grid search) menu-driven Software (Ver 1.1) (2018)
- Kobe_I_II(ver.6.1.5)(2023)
- R-4.3.1-win(2023)

3. Installation

3 application and Linking R to ASPIC_Manager


Before installation, uninstall old versions if uses have precious versions.

Order of	Name of	Download link	Size of	Size of	How to
the	software		Zipped	unzipped	install?
installation			file	(actual)	See slide #
			(MB)	files (MB)	(This manual)
1	R-4.3.1-win	https://cran.r-project.org/bin/windows/base/	80	180	12
		Download R-4.3.1 for Windows			
2	Kobe_I_II	Get links from Menu-driven stock assessment	7.4	13	13-14
	(ver6.2.0) (2024)	software developing team [MUNE]			
3	ASPIC_Manager	Menu.soft.SEC@gmail.com	26	100	15-16
	(ver1.1.0) (2024)				
4	Linking R to				17
	ASPIC_Manager				

3. Installation : How to install "R-4.3.1-win"?

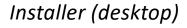
Go to https://cran.r-project.org/bin/windows/base/

Users will see the window below:

Then download from **Download R-4.3.1 for Windows**

3. Installation: Kobe I (plot) & II (management tool)

Double click the zipped installer (located folder or desktop)


Users can get the download link of the software

from the [MENU] Secretariat at <u>menu.soft.SEC@gmail.com</u>

Installer (folder)

Kobe_I_II_Manager(ver6.2.1)(2024)

3. Installation: Kobe I+II Follow 5 steps

Kobe_I_II_Manager(ver6.2.1)(2024) Welcome to the Kobe_I_II_Manager Installation Program This program will install Kobe_I_II_Manager on your computer.	Kobe_LJI_Manager(ver6.2.1)(2024) Check the Installation information Indicate the installation information such as the destination folder.	Users will get 4 the Kobe_I_II folder.
It is strongly recommended that you exit all programs before running this installation program. Click Next to continue the installation. Click Cancel to quit the installation program.	Check the installation information, then click Next when you do not need to change it. Click Back to reenter the installation information, then edit it when you need to do it.	☐ > PC > Windows (C:) > ESL Software
once reactio continue are installation, once cancer to que are installation program.	Destination Folder: C:\ESL Software\Kobe_I_II_Manager Extra Menu: Create Shortcut on Desktop Create shortcut for all users	(□ △) (□ へ) 並べ替え ~
WARNING: This program is protected by copyright law and international treaties.		│ 名前
Unauthorized reproduction or distribution of this program, or any portion of it is prohibited b		Kobe I II Manager 2024
Copyright (C) 2021 Environment Simulation Laboratory Co.Ltd.	4 b ¹	Kobe_I_II_Manager 2024
Kantan Installer Cancel	Kantan Installer Back Next Cancel	
• ~	(A)	Kobe_I_II_Manager(ver6.2.1)(2024)
beb_I_II_Manager(ver6.2.1)(2024) Select Destination Folder Set up the destination folder where the application will be installed.	「 ff報 X	Congratulations! The application has been successfully installed.
Select the folder where files will be installed, then click Next.	The destination folder does not exist. Do you want to create it?	The application has been successfully installed.
	Yes No	Click the registered icon to start the installed program.
C:\ESL Software\Kobe_I_II_Manager Browse Default Folder		
Space Available : 449,088,090,112 byte		
Space Required : 10,789,317 byte	If the destination folder "ESL Software"	
	exits, this window will not appear.	
Cantan Installer Back Next Cancel		Kantan Installer Finish Letter:
Cantan Installer Back Next Cancel		(IS

2024

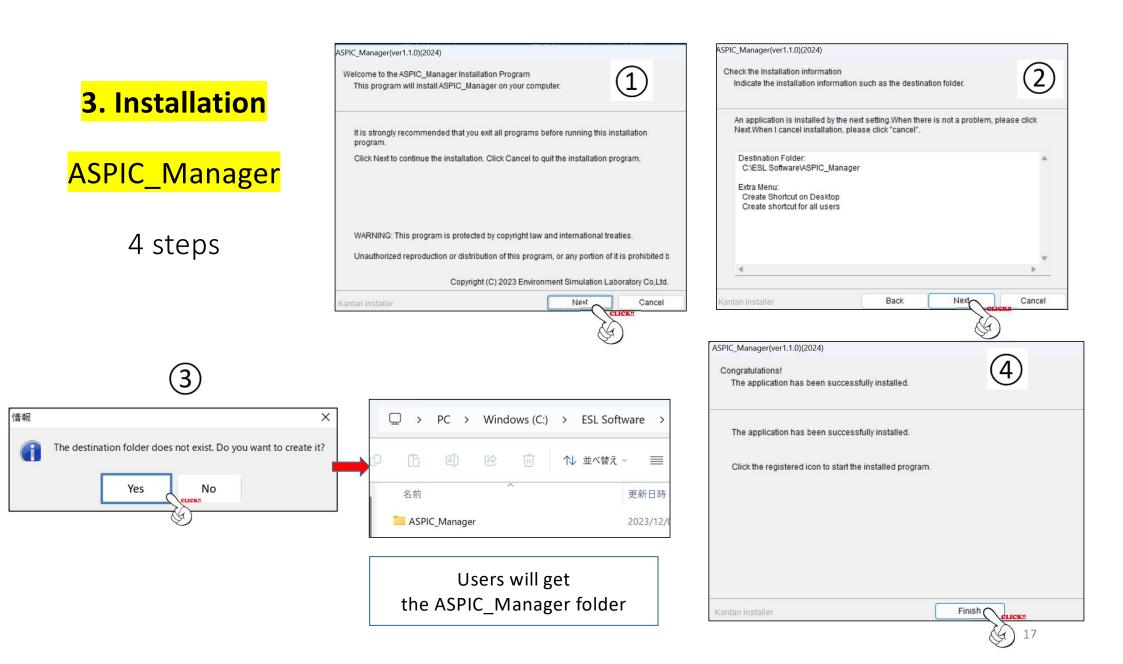
3. Installation: ASPIC_Manager

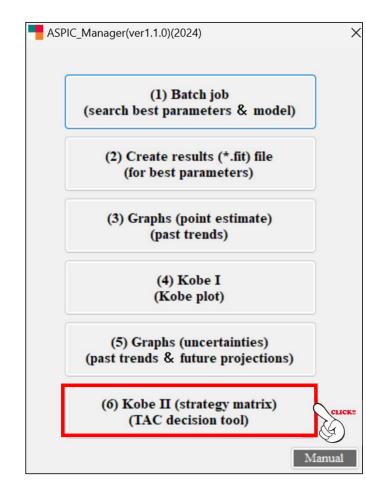
Double click the zipped installer (located folder or desktop)

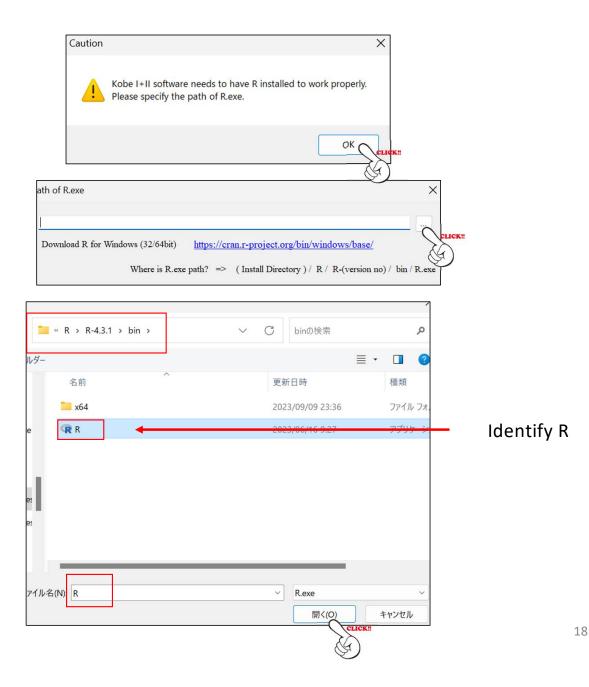
Users can get the download link of the software

from the [MENU] Secretariat at <u>menu.soft.SEC@gmail.com</u>

Installer (folder)


ASPIC_Manager(ver1.1.0)(2024)

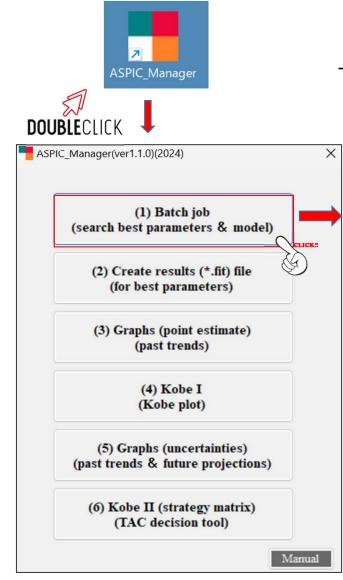

Installer (desktop)



DOUBLECLICK

3. InstallationLinking R to ASPIC_Manager

4. Running software (6 menus) ASPIC_Manager 4. Running ASPIC_Manager 4.1 Batch job


ASPIC needs **one input file (*.inp)** (program+ data)to search best parameters & model (batch job).

Program	FIT "test" LOGISTIC YLD SSE 2 1000 0 20000 1d-8 3d-8 6 1d-4 24 8d0 1d0 1 1 1 1 1 7300 70000 0.004 0 1 1 1 3000 15000	<pre>## Run type (FIT, BOT, or IRF) ## title ## Modeltype, conditioning, loss fn ## Verbosity on screen (0-3); add 10 for SUM & PRN file ## Number of bootstrap trials, <= 1000 ## 0=no MC search, 1=search, 2=repeated srch; N trials ## Convergence crit. for simplex ## Convergence crit. for restarts, N restarts ## Conv. crit. for F; N steps/yr for gen. model ## Maximum F when cond. on yield ## Stat weight for B1>K as residual (usually 0 or 1) ## Number of fisheries (data series) ## Statistical weight for data series ## B1/K (starting guess, usually 0 to 1) ## MSY (starting guess) ## K (carrying capacity) (starting guess) ## Estimate flags (0 or 1) (B1/K, MSY, K and q) ## Min and max constraints MSY</pre>	Data	1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977	-1 -1 -1 -1 omitted) 380 240 229 278 220 197 219 -1 -1 -1 -1 350 309 337	stype (CC = CPUE, catch) 3646 2581 2993 3303 3034 11258 8652 9349 9107 9172 9203 9495 5266 4766 6074 6362 8839 6696 6409 11835
	0111	## Estimate flags (0 or 1) (B1/K, MSY, K and q)				
				1978	445	11835
	23000 170000	## Min and max constraints K		1979 1980	316 252	11937 13558
	39332385	## Random number seed (large integer)		1981	231	11180
	35	## Number of years of data in each series		1982	283	13215
	"CPUE Catch"	## Title for 1st series (<=40 chars)		1983	222	14527
				1984	213	12791
ntry items						
Red boxes : <u>Users mus</u>	<u>t edits (</u> details are expl	ained in this Section 4.1 Batch job).	D	ata (YI	EAR, C	PUE CATCH in tons)
Black boxes: Numbers	need to be entered us	ing specific computing rules, which	are automatically	lsers n		make this data set
		need to enter (for details, see Appe			(see	slide #28)

For all others: Default values/names will be used. Thus, users don't need to enter. ٠

Entry items

21

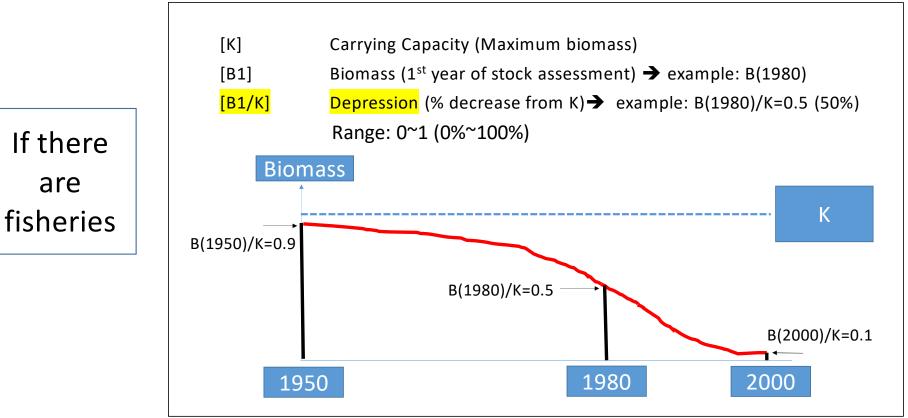
To start, click menu (1), then entry window will appear (below). Users need to enter 5 items.

ASPIC_Manager(ver1.1.0)(2024)		Create input file				
(1) Batch job (search best parameters & model)	•	Input item	Example		Edit	
(2) Create results (*.fit) file) Title name	SWO		sm	
(for best parameters)	2	Estimate flags (1=yes or 0=no -> fix) (B1/K, MSY, K, q)	0111	1 📫 1	÷ 1 ÷ 1	-
(3) Graphs (point estimate) (past trends)	3	Intrinsic population growth rate (r)	0.27		3	
(4) Kobe I (Kobe plot)	4	Data (YEAR, CPUE AND CATCH)				
				ОК	Cancel	
(5) Graphs (uncertainties) (past trends & future projections)						
(6) Kobe II (strategy matrix) (TAC decision tool)						

(1) is self-explanatory. (2)~(4) are explained in slides #21~#27.

② What are Estimate flags (1=yes or 0=no→fix) (B1/K, MSY, K, q)?

4 parameters (B1/K, K, MSY & q) need to be estimated.


flag=1 (yes to estimate) or flag=0 (no estimate and fix some values) For example, B1/K, MSY, K, q

If estimate all 4 parameters If no estimate B1/K (fix some value)

Normally at the beginning, all 4 parameters will be estimated. If no convergences (all 4 parameters cannot be estimated)...

➔ 1 or 2 parameters will be fixed to get convergences (see #37- #41 & #43 for details)

Relevant information on 2 What is B1/K (start guess or fixed value)(0 to 1)?

Users need to assign one value \rightarrow Example: B1=B(1980)=0.5

Relevant information on 2What is q (catchability coefficient) *(efficiency of catch).*

If gear A catches 2 times higher than gear B in the same effort, q=1.0 (gear A) and q=0.5 (gear B)

Gear A is 2 times efficient to catch same amount of catch in the same effort than Gear B

Relevant information on 2Assigning initial seeding values for B1/K, MSY, K and q (Batch job)

MSY & K (carrying capacity) → initial guess values & Min/Max values q (catchability) → initial guess value

Refer to next slide

Computing rules are applied.

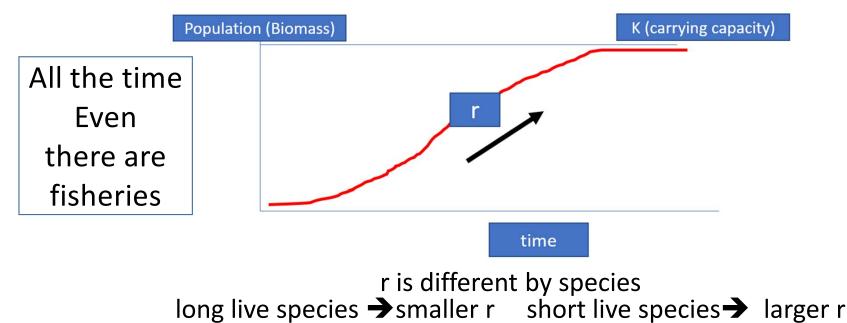
This soft will automatically compute and assign.

→ Thus <u>users don't need to enter</u>, but they understand the background.

4. Running software : 4.1 Batch job Relevant information on ②

Definition of initial seeding values for 3 parameters (MSY, K and q)

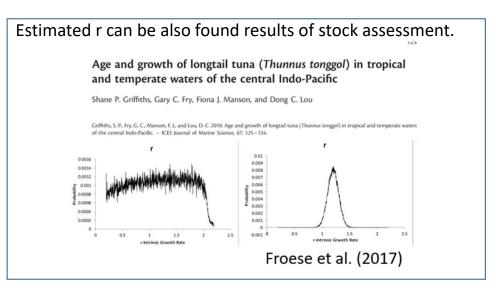
(note) This software will automatically compute these values using definition (below) and assign to the batch job. Thus, users do not need to do this work, but need to understand the meanings.


Parameter	Min	Start	Max
MSY	Average catch of	1/2 of Max catch	Maximin Catch
	3 lowest annual catches		
К	1.1 times of Max MSY	1.1 times of Min K	4(Schaefer)*Max (MSY)/r
			(*)
q		0.2*Ave CPUE/Ave catch	
(**)		(average in last 5 years)	

(*) K=(constant for Schaefer model)*MSY/r, where r is the intrinsic population growth rate (see slide #27-#28)

Relevant information on $\ensuremath{\Im}$

What is the intrinsic population growth rate (r)?


Speed of population increase

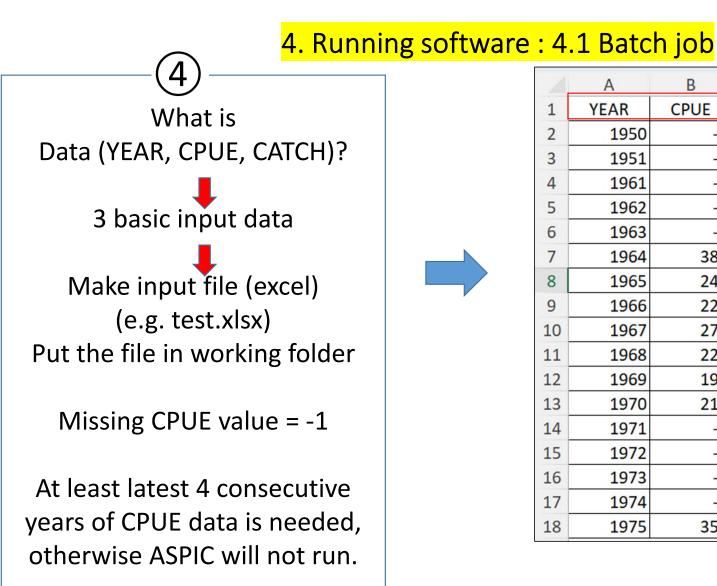
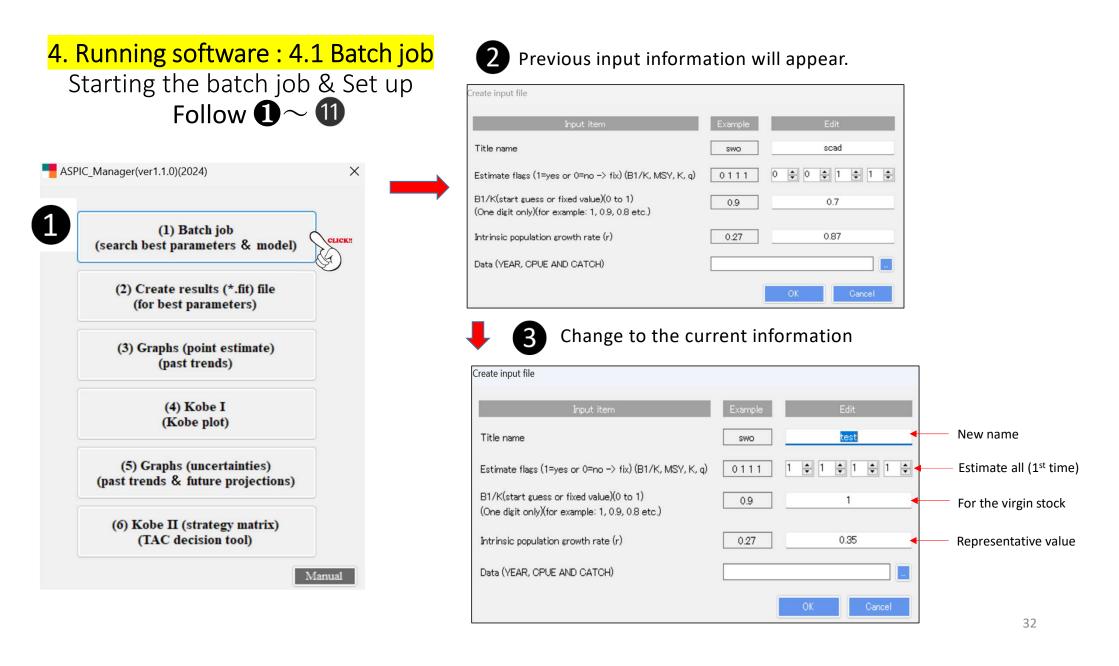

intrinsic population growth rate (r)

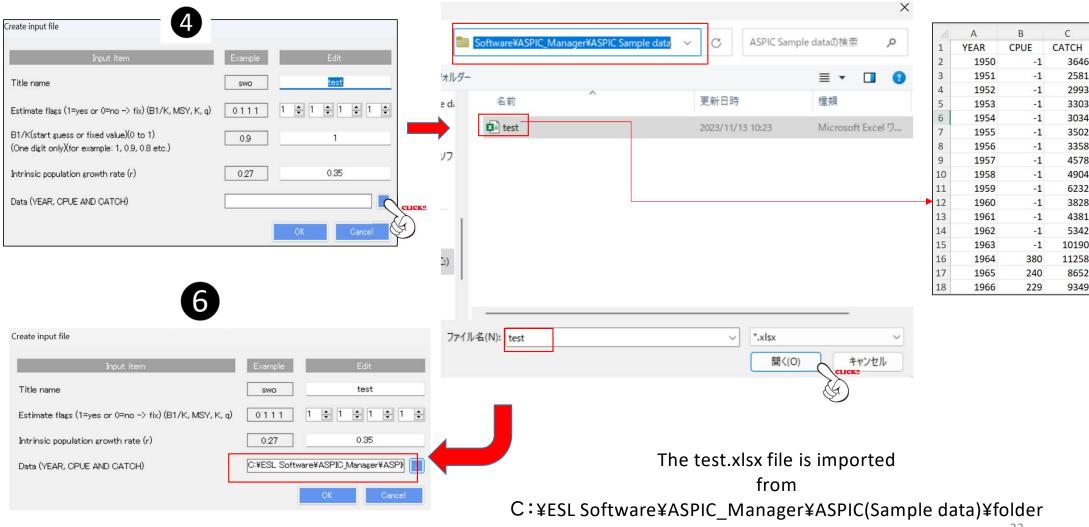
Table (below) shows examples Range and selection of representative r (LOT: longtail tuna and KAW: Kawakawa)

Area	Reference		this WS (ave of Indian										r														
World wide	Fishbase	sp	Ocean)	area	source	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4							
Indian Ocean	Zhou and Sharma (2014)			world wide	Fish base				0.32																		
Indian Ocean	IOTC (2015)	LOT	0.99	0.99	0.99		0.99	0.99	0.99	0.99	Indian Ocean	Zhou and Shama (2014)										0.94					
World wide	Fishbase			indian occan	IOTC(2015)										1.03												
Indian Ocean	Sharma (2013)			world wide	Fish base							0.57															
Indian Ocean	Zhou and Sharma (2014)	KAW	1.34	Indian Ocean	Shama (2013)															1.37							
				indian occan	IOTC(2015)														1.3								



1	А	В	С	
1	YEAR	CPUE	CATCH	
2	1950	-1	3646	
3	1951	-1	2581	
4	1961	-1	4381	
5	1962	-1	5342	
6	1963	-1	10190	
7	1964	380	11258	
8	1965	240	8652	
9	1966	229	9349	
10	1967	278	9107	
11	1968	220	9172	
12	1969	197	9203	
13	1970	219	9495	
14	1971	-1	5266	
15	1972	-1	4766	
16	1973	-1	6074	
17	1974	-1	6362	
18	1975	350	<mark>8839</mark>	

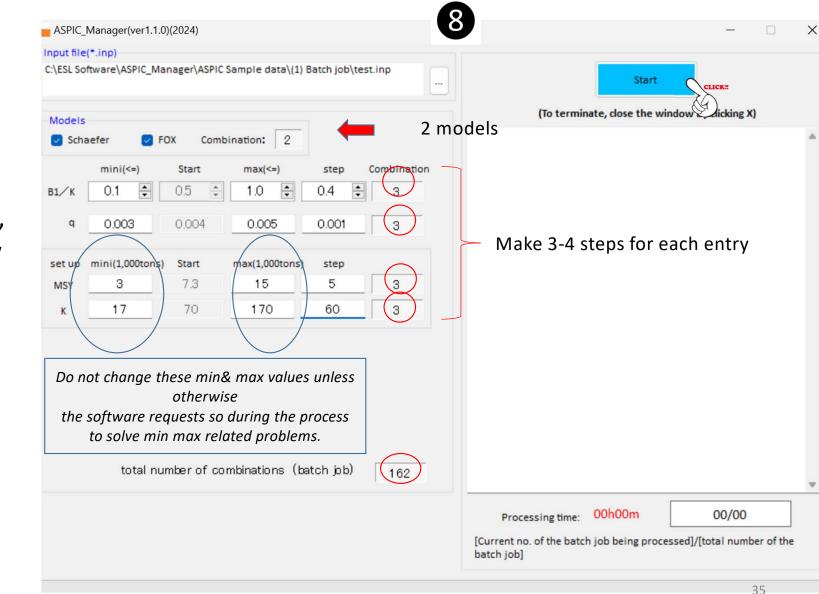
Catch (tons)


Now we will practice using Sample data (Revised)

\square > PC > Windows (C:)	> ESL So	ftware > ASPIC_N	/lanager >
	↑↓ 並べ替え	- ◇ □ 表示 ◇	•••
□ 名前		更新日時	種類
📒 ASPIC Sample data (revised)(Jar	n 23)	2024/01/23 16:39	ファイルフ
ASPICBatchJob RiskAssessment sys		2024/01/23 15:59 2024/01/16 2:03 2024/01/23 1:47	ファイル フ: ファイル フ: ファイル フ:

4. Running software 4.1 Batch job Importing the input file (catch & effort) data

5 Select the test.xlsx file


Creating the new input file by overwriting to the any previous input file. Example(below) any.inp → test.inp

存	×	沐仔		*
↑ Software¥ASPIC_Manager¥ASPIC Sample data ∨ C ASPIC Sample	dataの検索 🔎	↑ Software¥ASPIC_Ma	nager¥ASPIC Sample data \vee 🔿	ASPIC Sample dataの検索 の
いフォルダー	≣ ▾ 🔞	新しいフォルダー		≣ - ()
mple di 名前	種類	Sample di 名前	^ 更新日時	種類
定著4 any.inp 2023/12/07 9:55	INP ファイル	予定 著彳 🌕 any.inp	2023/12/0	17 9:55 INP ファイル
1連ソフ		11周連ソフ		
vs (C:)		ows (C:)		
Change na	me	E:)		
N): any.inp to test.in		test.inp		~
		頬(T): *.inp		~
示 保存(S)	キャンセル	⊧表示		保存(S) キャンセル

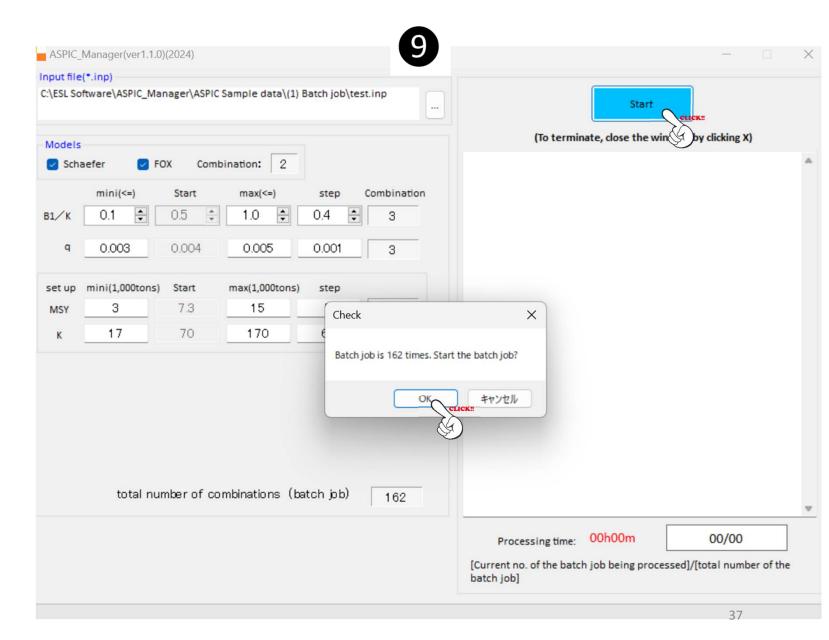
4. Running software 4.1 Batch job Setting up entries for the batch job

After creating the (new) test.inp file, the batch job window will appear.

Edit entries 3-4 steps for each entry (B1/K, q. MSY, K) 162 combinations (runs)

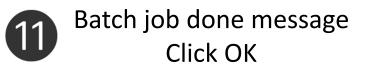
Important note

Even when values of MSY & K for mini, start & max are <u>valid</u>, for some cases, there will be warning messages for <u>invalid</u> values and <u>no results</u>.


This is caused by r values. In such case, try <u>other</u> r values, then there will be <u>no</u> warnings and results will be <u>obtained</u>.

	(*.inp)								
ESL Sof	ftware\ASPIC_M	anager\ASPIC S	ample data\(1)	Batch job\te	est.inp		Start		
lodels						(To termina	ate, close the window	v by clicking X)	
Scha	efer 🔽 F	OX Combi	nation: 2						
	mini(<=)	Start	max(<=)	step	Combination				
1/K	0.1 🜩	0.5	1.0 🜩	0.4 🗘	3				
q	0.003	0.004	0.005	0.001	3				
et up	mini(1,000tons) Start	max(1,000tons)	step					
MSY	3	7.3	15	5	3				
к	17	70	170	60	3				
	total nu	umber of con	nbinations (b	atch job)	162	Processing time:	00h00m	00/00	
						[Current no. of the batch batch job]	job being processed]/[total number o	of the

4. Running software 4.1 Batch job


After clicking the start button, the confirmation (check) window will appear. If OK, click OK.

> If not OK, click cancel and revise entries.

4. Running software: 4.1 Batch job

Snapshot of the processing
Snapshot of the processing during the batch job (35 th run)

ASPIC_Ivianager(ver1.1.0)(2024)		ASPIC_Manager(ver1.1.0)(2024)	- L X
Input file(*.inp) C\ESL Software\ASPIC_Manager\ASPIC Sample data\(1) Batch job\test.inp	Start	nput file(*.inp) ::\ESL Software\ASPIC_Manager\ASPIC Sample data\(1) Batch job\test.inp	Start
Models	(To terminate, close the window by clicking X)	Models	(To terminate, close the window by clicking X)
Schaefer FOX Combination: 2 mini(<=) Start max(<=) step Combination B1/K 0.1 ÷ 0.5 ÷ 1.0 ÷ 0.4 ÷ 3 q 0.003 0.004 0.005 0.001 3 set up mini(1,000tons) Start max(1,000tons) step MSY 3 7.3 15 5 3 K 17 70 170 60 3	ASPIC Version 5.10	Schaefer FOX Combination: 2 mini(<=) Start max(<=) step Combination B1 / K 0.1 ÷ 0.5 ÷ 1.0 ÷ 0.4 ÷ 3 q 0.003 0.004 0.005 0.001 3 set up mini(1,000tons) Start max(1,000tons) step MSY 3 7.3 15 5 Done K 17 70 170 60	Elapsed CPU ticks: 32 Elapsed time: 0 hours, 0 minutes, 0 seconds. NOTE: ASPIC ended normally. The output file is test.fit
total number of combinations (batch job) 162	ASPIC Version 5.10	total number of combinations (batch job) 162	
	parch lool		batch job]

4. Running software: 4.1 Batch job

Results of all runs will be stored in the excel file with time stamp.

□ >	PC >	Windows (C:)	> ESL Soft	ware >	ASPIC_Manag	er > ASPIC Sample	e data >(1)	Batch job
	(]		↑↓ 並べ替え、		表示 ~ •••			
□ 名前		\checkmark		更新日時		種類	サイズ	
🛛 test				2024/01/1	5 10:20	Microsoft Excel ワーク	10 KB	
🗋 test	.inp			2024/01/2	22 14:27	INP ファイル	2 KB	
🗋 test	.fit			2024/01/2	22 14:26	FIT ファイル	26 KB	
🛛 Out	tput_20240	1221421		2024/01/2	22 14:26	Microsoft Excel ワーク	25 KB	
any.	inp			2024/01/1	5 10:20	INP ファイル	2 KB	

4. Running software: 4.1 Batch job Results

Results (Excel file) (2 sheets) → "Converged" & "Not converged/Errors"

Users will use the "Converged" sheet to select the best parameters (see next slide).

If no results in "Converged sheet", users need to fix one parameter & re-run the batch job (see #38-#40 for details)

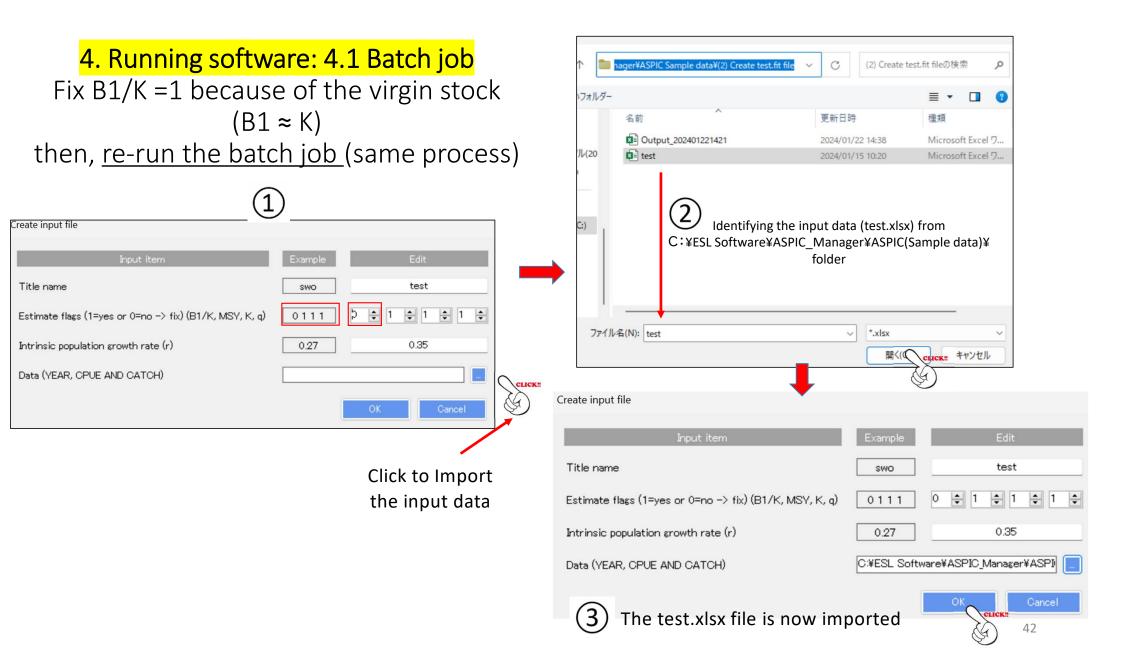
A	В	С	D	E	F	G	H	1	J K	L	M	N	0	P	Q	R	S	Т	U	V	W	Х	Y
Time	0h2m	No of jobs	162	Average	0.0180	Min/job	1.08	Sec/job	←	— I	Run	time	info	rma	tion								
Parameters	Model	В1/К	q	MSY	к																		
Range (step)	Fox and Schaefer	0.8-1 by 0.1	0.003-0.005 by 0.001-3	3-15 by 5	23-170 by 60					_													
Flag (0: fixed / 1: estimate)	Schaerer	1	1	1	1				ł		nto	rmati	on f	or tr	ne ba	itch	Job						
Weight unit										(See t	he ne	xt sli	de r	now t	o de	cide ·	the h	best	narai	mete	rs usi	ing results.
(1,000 tons)									-	-				uc) :		0 0.0	orac			o an an	nete		
		r	Combin	ation	1					r	1	1			1		Results		1	1	1		1
No	B1/K	MSY	MSY	MSY	K(min)	K(start)	K(max)	q	R2 👻	RMS 🚽	r [Est] 👻	Model 🚽	B1/K [Est]	MSY [Est]	K [Est]	q (Feet)	Current	TBmsy [Est]	TB	Fmsy [Est]	B/Bmsy [Est]	F/Fmsv [Est]	note
13	0.8	(min) 3	(start) 8	(max) 15	23	83	170	0.003	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	[Est]	catch 12.79	55.52	[Est] ¥ 31.7	0.172	0.472	2.58	ASPIC ended normally.
14	0.8	3	8	15	23	83	170	0.004	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally.
15	0.8	3	8	15	23	83	170	0.005	0.524	0.175	0.3432	Schaefer	0.113	9.533	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
16	0.8	3	8	15	23	140	170	0.003	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
17	0.8	3	8	15	23	140	170	0.004	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
18	0.8	3	8	15	23	140	170	0.005	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally
22	0.8	3	13	15	23	83	170	0.003	0.524	0.175	0.3436	Schaefer	0.113	9.534	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally
23	0.8	3	13	15	23	83	170	0.004	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
24	0.8	3	13	15	23	83	170	0.005	0.524	0.175	0.3436	Schaefer	0.113	9.534	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally.
25	0.8	3	13	15	23	140	170	0.003	0.524	0.175	0.3436	Schaefer	0.113	9.534	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally.
26	0.8	3	13	15	23	140	170	0.004	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.52	31.7	0.172	0.473	2.58	ASPIC ended normally.
27	0.8	3	13	15	23	140	170	0.005	0.524	0.175	0.3436	Schaefer	0.113	9.534	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally.
40 41	0.9	3	8	15 15	23	83 83	170 170	0.003	0.524	0.175	0.3433	Schaefer Schaefer	0.113	9.534 9.534	111.1 111.1	0.0066	12.79 12.79	55.53 55.53	31.7 31.7	0.172	0.472	2.58	ASPIC ended normally. ASPIC ended normally.
41	0.9	3	8	15	23	83	170	0.004	0.524	0.175	0.3435	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.51	31.69	0.172	0.472	2.58	ASPIC ended normally.
42	0.9	3	8	15	23	140	170	0.003	0.524	0.175	0.3433	Schaefer	0.113	9.533	111.1	0.0066	12.79	55.53	31.7	0.172	0.473	2.58	ASPIC ended normally
44	0.9	3	8	15	23	140	170	0.004	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally.
45	0.9	3	8	15	23	140	170	0.005	0.524	0.175	0.3432	Schaefer	0.113	9.533	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally
49	0.9	3	13	15	23	83	170	0.003	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally
50	0.9	3	13	15	23	83	170	0.004	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally
51	0.9	3	13	15	23	83	170	0.005	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.52	31.7	0.172	0.473	2.58	ASPIC ended normally
52	0.9	3	13	15	23	140	170	0.003	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally
53	0.9	3	13	15	23	140	170	0.004	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally
54	0.9	3	13	15	23	140	170	0.005	0.524	0.175	0.3436	Schaefer	0.113	9.534	111	0.0066	12.79	55.52	31.69	0.172	0.472	2.58	ASPIC ended normally
67	1	3	8	15	23	83	170	0.003	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally
68	1	3	8	15	23	83	170	0.004	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally
69	1	3	8	15	23	83	170	0.005	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.51	31.69	0.172	0.473	2.58	ASPIC ended normally
70	1	3	8	15	23	140	170	0.003	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
< >	Conv	rged	Not		ged or			+									: (2

4. Running software: 4.1 Batch job *How to decide the best parameters using results*

Step 1: Sort R2: descending & RMS: ascending order.

R2: Correlation coefficient and RMS: Root Mean Square Error

→ R2: Higher and RMS: lower better


R2	•	RMS	•
0.5	24	0.17	5
0.4	56	0.22	2
0.34	47	0.34	5
0.2	23	0.67	8

Step 2 Check B1/K if OK.

For this case, B1/K=0.113 is too low as it is he virgin stock (should be close to 1).

			5 G						Results			1	1	L
	D 2	DMC	r	Madal	B1/K	MSY	K	q	Current	TBmsy	ТВ	Fmsy	B/Bmsy	F/Fmsy
	R2 👻	RMS 👻	[Est] 💌	Model 👻	[Est] 💌	[Est] 💌	[Est] 🔻	[Est] 🔻	catch 💌	[Est] 🔻				
Best answer ——>	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58
	0.524	0.175	0.3436	Schaefer	0.113	9.534	111	0.0066	12.79	55.52	31.69	0.172	0.472	2.58
	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.69	0.172	0.472	2.58
	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58

We cannot accept this result. As next step, we will fix B1/K=1 & do batch job again

4. Running software: 4.1 Batch job

Fix B1/K =1 because of the virgin stock (B1 \approx K), then <u>re-run the batch job</u>

5

Edit the parameters as before

except B1/K =1 (fixed), so need to enter values.

2 models

4) Save the same input file name as before (test.inp) by overwriting

			v	ASPIC_Manager(ver1.1.0)(2024)
✓ ASPIC Sa > (2) Create test.fit fil	le v C (2) Create	test.fit fileの検索	م	Input file(*.inp) C:\ESL Software\ASPIC_Manager\ASPIC Sample data\(2) Create test.fit file\test.inp
_		≣ •	0	
名前	更新日時	種類		Models Schaefer S FOX Combination: (2)
test.inp	2024/01/22 14:27	INP ファイル		Schaeler Pox combination.
inp	保存(т Л	mini(<=) Start max(<=) step Combinatio B1 / K 1.0 1.0 1.0 0.1 1 q 0.003 0.004 0.005 0.001 3 set up mini(1,000tons) Start max(1,000tons) step MSY 3 7.3 15 5 3 κ 17 70 170 60 3
前を付けて保存の確認 test.inp は既に存在します。 上書きしますか?	(まい(Y) (よい(Y) (L)いえ(N)			total number of combinations (batch job) 54
	- 名前 ① testinp inp iを付けて保存の確認 test.inp は既に存在します。	▲前 更新日時 Lestinp 2024/01/22 14:27 inp (保存() ix 付けて保存の確認 test.inp は既に存在します。 上書きしますか? はい(Y) いいえ(N)	- 名前 更新日時 種類 testinp 2024/01/22 14:27 INP 7アイル (味存(、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	

Processing time: 00h00m

batch job]

[Current no. of the batch job being processed]/[total number of the

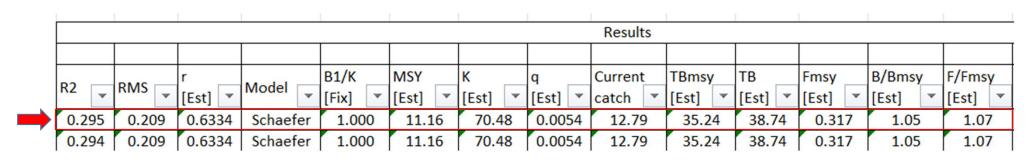
Start (To terminate, close the **Start**) clicking X)

00/00

X

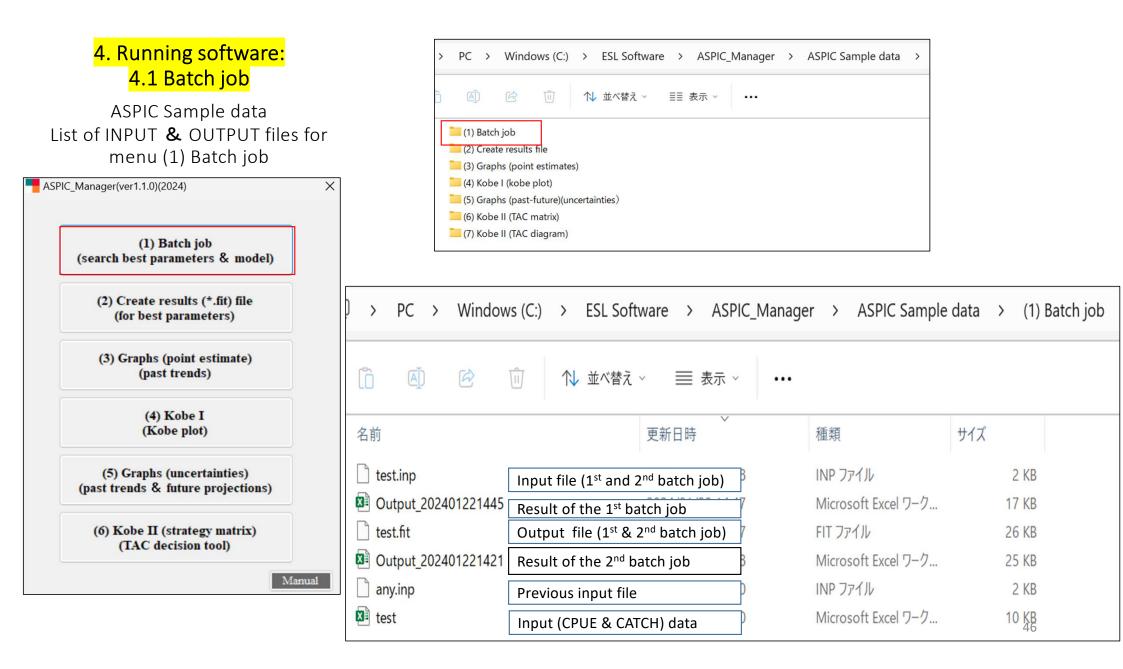
4. Running software 4.1 Batch job

Re-running the batch job by fixing B1/K=1


because the initial run did not produce plausible results

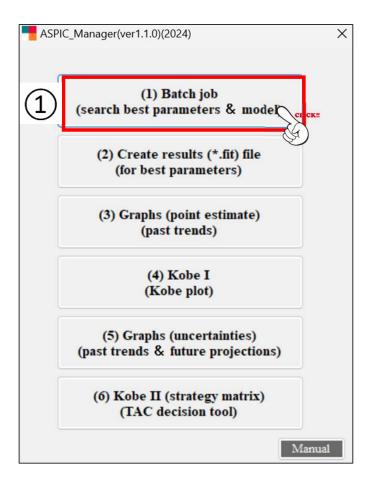
and

the virgin stock is assumed (B1/K).

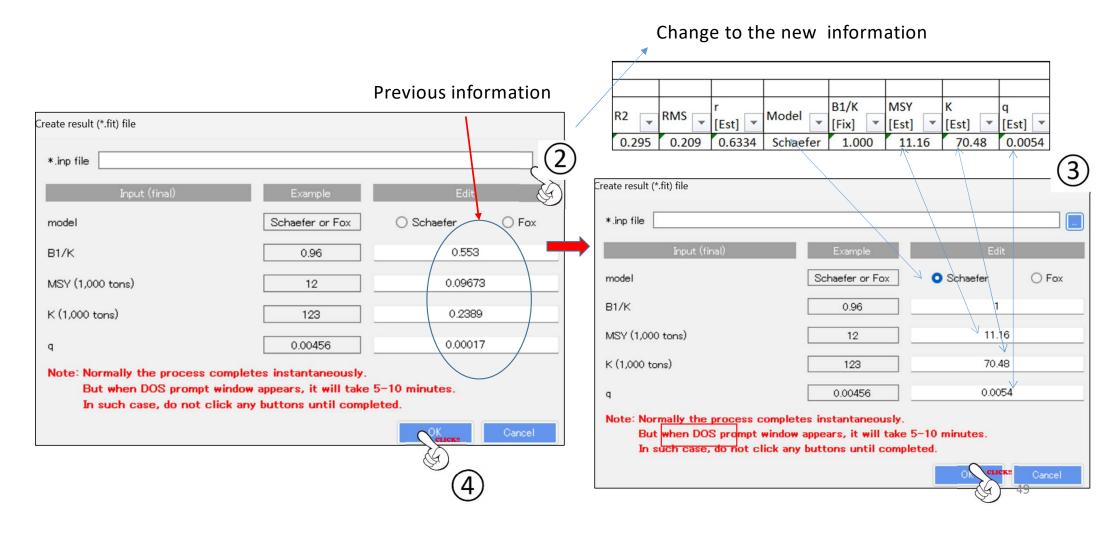

Input file	(* inn)					
	ftware\ASPIC_	Manager\ASPIC	Sample data\(2)) Create test.f	it	Start
Models						(To terminate, close the window by clicking X)
Schi	aefer 🔽	FOX Comb	pination: 2			R:1 It: 144 B1/K:1.0000 K:7.05E+04 MSY:1.12E+04 SSE:6.1244253E-01
	mini(<=)	Start	max(<=)	step	Combination	R:2 It: 154 B1/K:1.0000 K:7.05E+04 MSY:1.12E+04 SSE:6.1244253E-01 R:3 It: 145 B1/K:1.0000 K:7.05E+04 MSY:1.12E+04 SSE:6.1244253E-01 R:4 It: 140 B1/K:1.0000 K:7.05E+04 MSY:1.12E+04 SSE:6.1244253E-01
B1∕K	1.0 🜩	1.0 🔹	1.0 🔹	0.1 🛊	1	R:5 It: 150 B1/K:1.0000 K:7.05E+04 MSY:1.12E+04 SSE:6.1244253E-01
q	0.003	0.004	0.005	0.001	3	Elapsed CPU ticks: 7 Elapsed time: 0 hours, 0 minutes, 0 seconds.
						NOTE: ASPIC ended normally. The output file is test.fit
set up	mini(1,000tor	ns) Start 7.3	max(1,000tons) step 5		ASPIC Version 5.10
MSY	3				3	
K	17	70	170	60	3	NOTE: Reading input file test.inp TITLE: test
						R:0 It: 523 B1/K:1.0000 K:7.05E+04 MSY:1.12E+04 SSE:6.1244253E-01 R:1 It: 144 B1/K:1.0000 K:7.05E+04 MSY:1.12E+04 SSE:6.1244253E-01 R:2 It: 151 B1/K:1.0000 K:7.05E+04 MSY:1.12E+04 SSE:6.1244253E-01 R:3 It: 143 B1/K:1.0000 K:7.05E+04 MSY:1.12E+04 SSE:6.1244253E-01 R:4 It: 154 B1/K:1.0000 K:7.05E+04 MSY:1.12E+04 SSE:6.1244253E-01 R:5 It: 154 B1/K:1.0000 K:7.05E+04 MSY:1.12E+04 SSE:6.1244253E-01 R:5 It: 154 B1/K:1.0000 K:7.05E+04 MSY:1.12E+04 SSE:6.1244253E-01 B:5 It: 154 B1/K:1.0000 K:7.05E+04 MSY:1.12E+04 SSE:6.1244253E-01 Elapsed CPU ticks: 27 Elapsed CPU ticks: 27 Elapsed CPU ticks: 27 Elapsed CPU ticks: 27
						Elapsed time: 0 hours, 0 minutes, 0 seconds.
	totalı	number of co	mbinations (b	atch job)	54	NOTE: ASPIC ended normally. The output file is test.fit
						Processing time: 0h0m 33/54
						[Current no. of the batch job being processed]/[total number of the

Running software: 4.1 Batch job

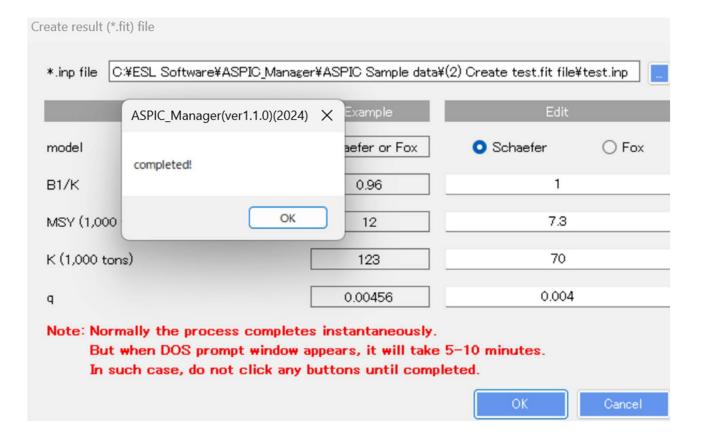
Run with the highest R2 & the Lowest RMS was selected as the best answer

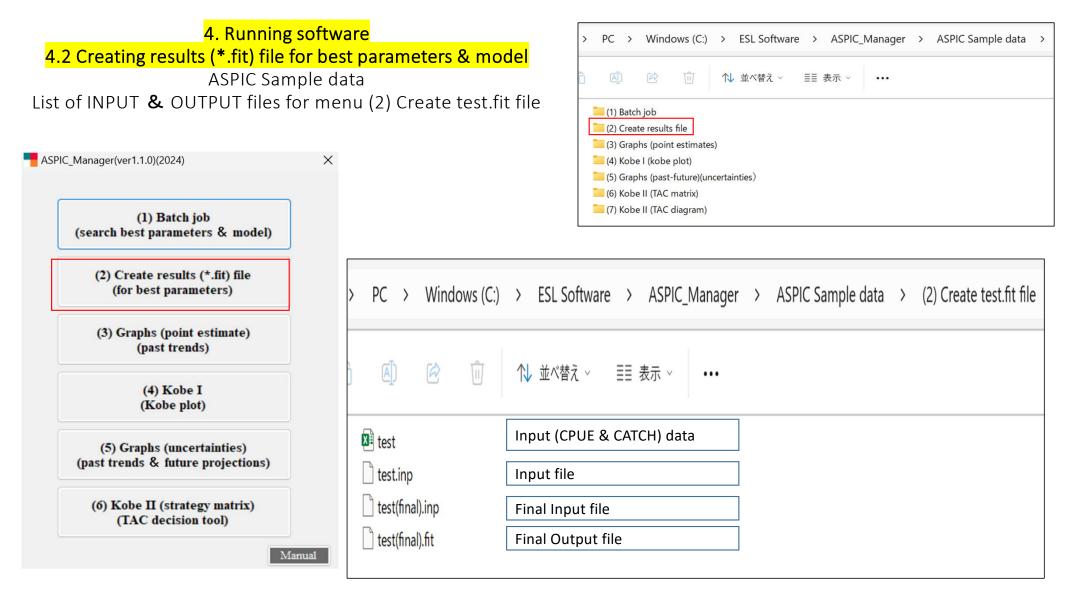

Estimated r=0.63 different from r=0.35

4. Running software: 4.1 Batch job <u>Summary</u>


- Data QC → check catch & CPUE
- Batch job is the most fundamental part of ASPIC (80%).
- Need to estimate the best solution for 4 parameters & Model, i.e.,
 - → 4 parameters(B1/K, MSY, M & q) and Model (Schaefer or Fox)
- In the 1st trail, estimate all 4 parameters (1111) and Model.
- To select the best run, choose the run with <u>highest R2 and lowest RMS</u>. (Check B1/K. If not realistic, fix B1/K=1 (if the virgin stock). Do the same)
- If no answers (convergences), check data.
- If data OK, fix 1 parameter (e.g., 0111).
- If still no answer, fix 2 (e.g., 0101).
- If still no → not possible to do ASPIC (one of answers/results)

4. Running software: 4.2 Creating results (*.fit) file for best parameters & model




Running software: 4.2 Creating results (*.fit) file for best parameters & model

Using the best parameters & model selected in (1) Batch job, full numerical output (results) (*.fit file) will be obtained. The *.fit file will be used for further analyses in Menu (3)~(7)

4. Running software 4.2 Creating results (*.fit) file for best parameters & model

4. Running software 4.3 Graphs (Past trends for point estimates) (6 graphs)

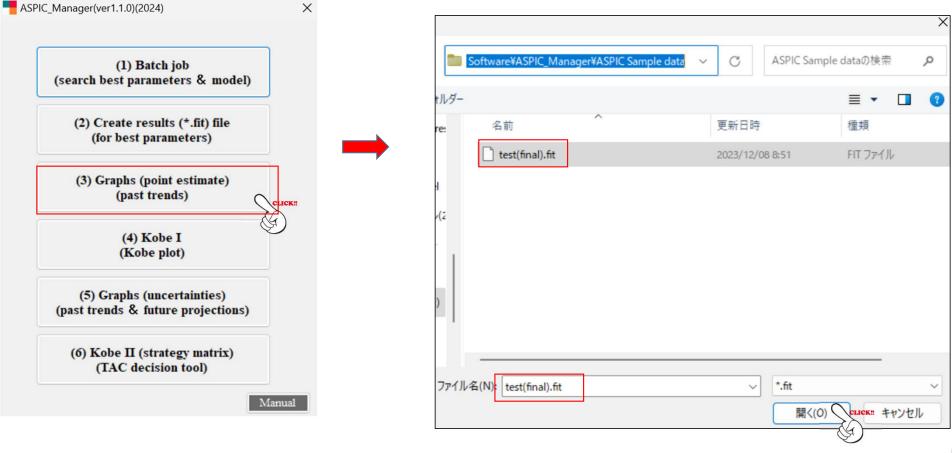
ASPIC_Manager(ver1.1.0)(2024)

(1) Batch job (search best parameters & model)

> (2) Create results (*.fit) file (for best parameters)

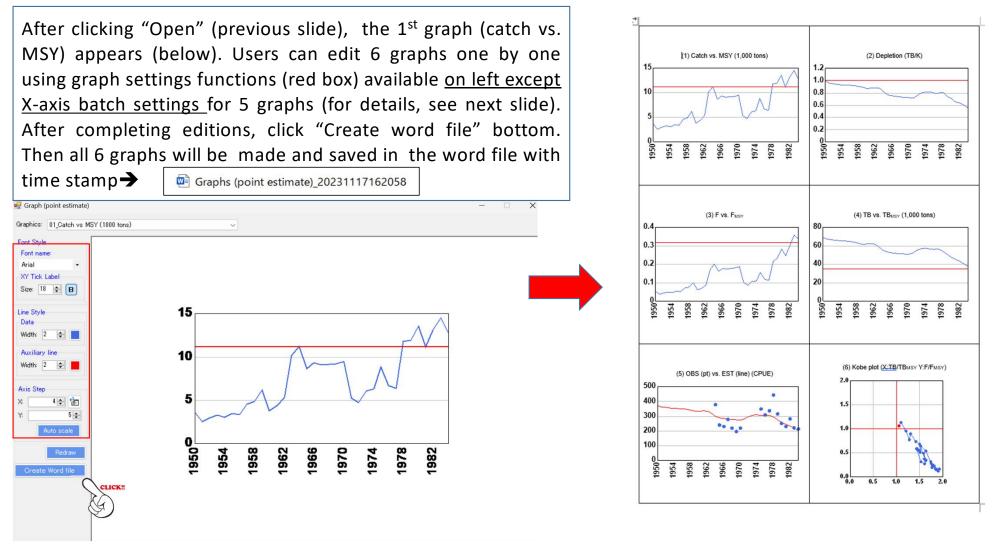
(3) Graphs (point estimate) (past trends)

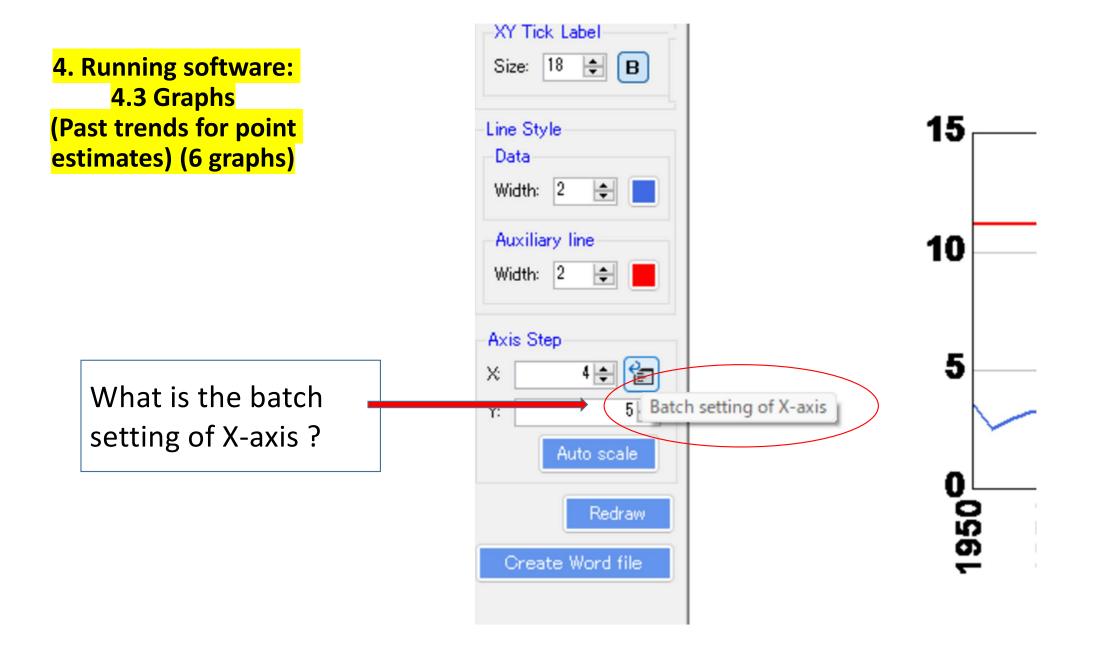
> (4) Kobe I (Kobe plot)


(5) Graphs (uncertainties) (past trends & future projections)

(6) Kobe II (strategy matrix) (TAC decision tool)

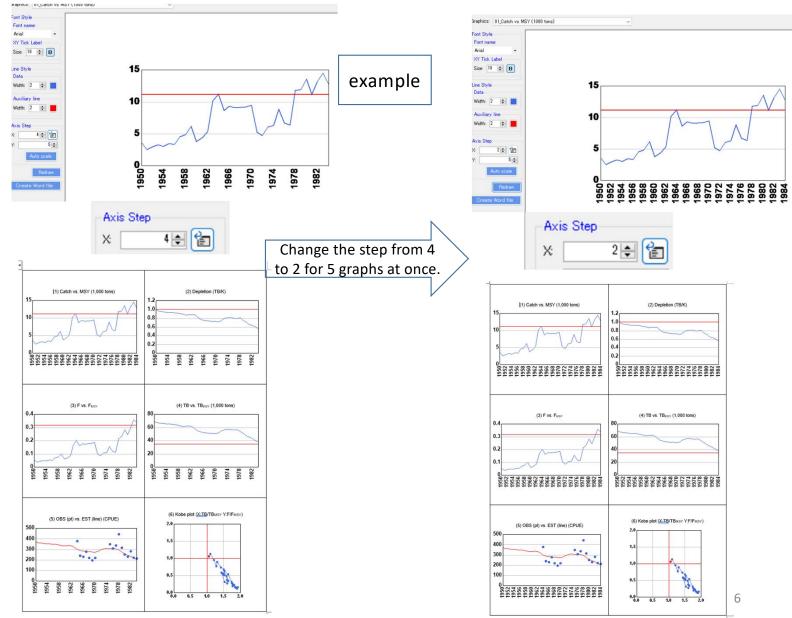
Manual


Х


4. Running software 4.3 Graphs (Past trends for point estimates) (6 graphs)

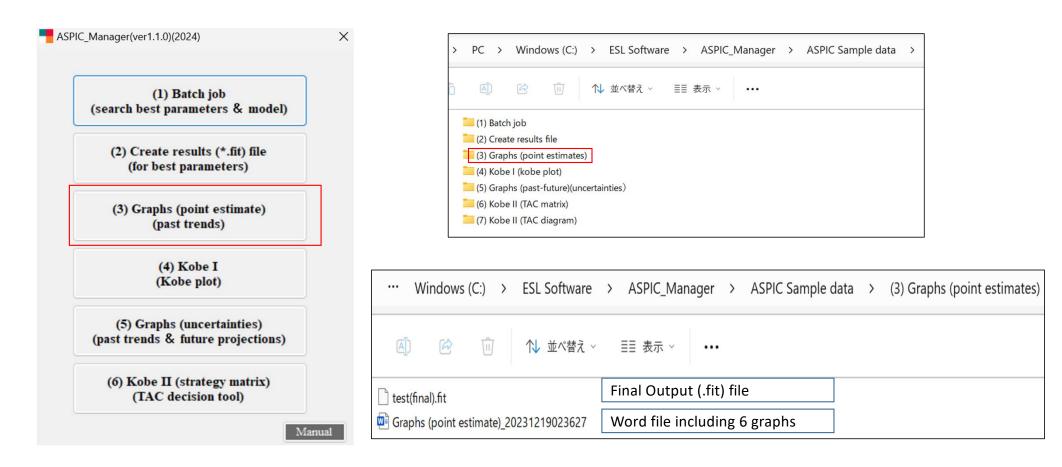
Open *(final).fit file \rightarrow test(final).fit (our example)

4. Running software: 4.3 Graphs (Past trends for point estimates) (6 graphs)



4. Running software 4.3 Graphs (Past trends for point estimates) (6 graphs)

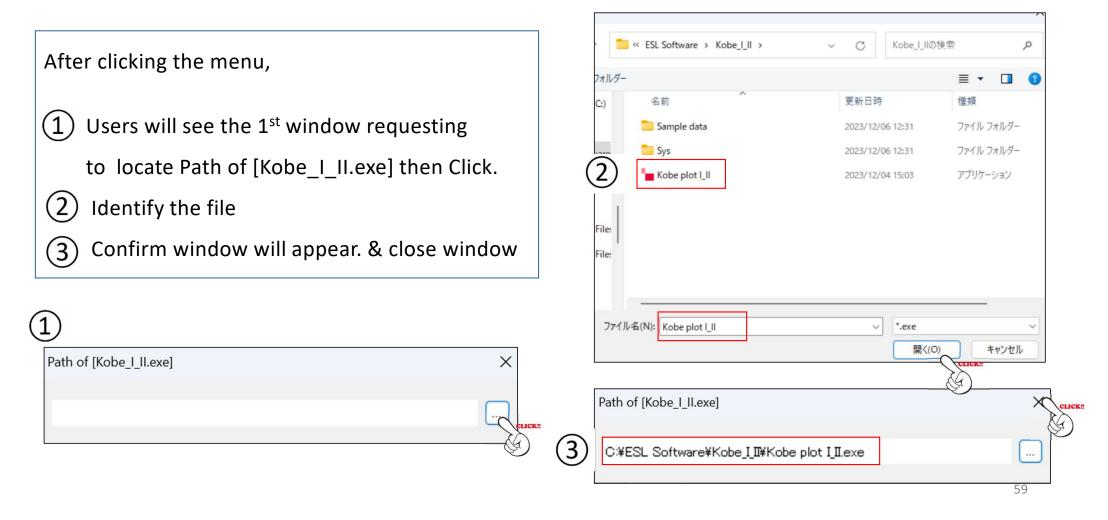
What is X-axis batch setting?


Normally Y axis are different scales, thus optimum steps need to be adjusted one by one.

However, X axis is common all for years except the last Kobe plot. Thus this x-axis batch setting can change steps for 5 graphs automatically.

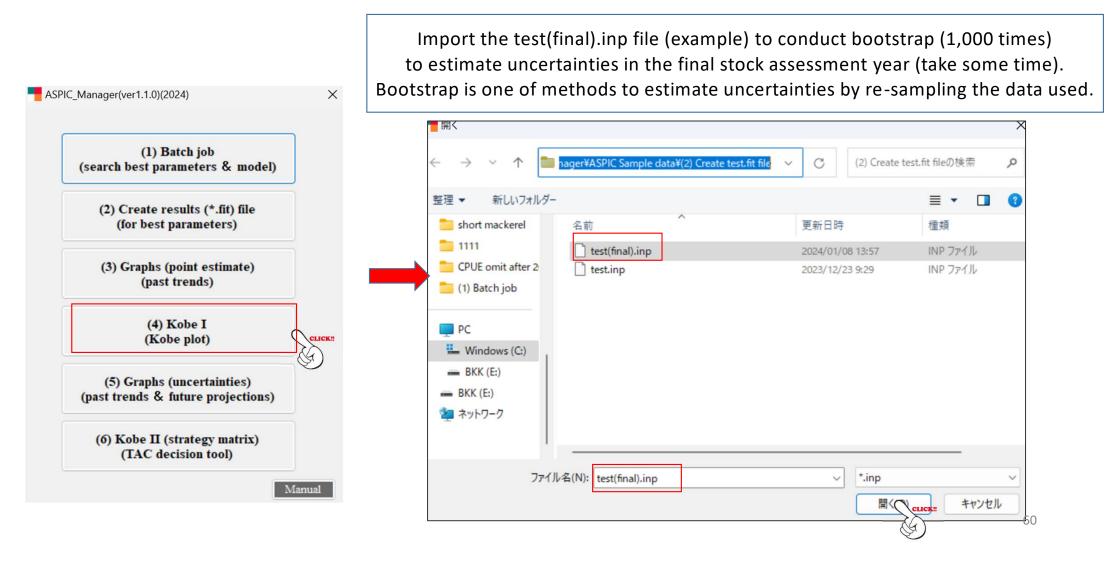
4. Running software 4.3 Graphs (Past trends for point estimates) (6 graphs)

ASPIC Sample data List of INPUT & OUTPUT files for menu (3) Graphs (point estimate)



4. Running software: 4.4 Kobe I (Kobe plot) Produce Kobe plot with uncertainties (confidence surface)

(1) Batch job
search best parameters & mod
(2) Create results (*.fit) file
(for best parameters)
(3) Graphs (point estimate)
(past trends)
(4) Kobe I
(Kobe plot)
(5) Graphs (uncertainties)
past trends & future projection
(6) Kobe II (strategy matrix)
(TAC decision tool)


4. Running software: 4.4 Kobe I (Kobe plot) Locate Kobe_I_II.exe file

IMPORTANT
This will be done only when users use this menu at the first time.

4. Running software: 4.4 Kobe I (Kobe plot)

Produce Kobe plot with uncertainties (confidence surface)using *(final).inp

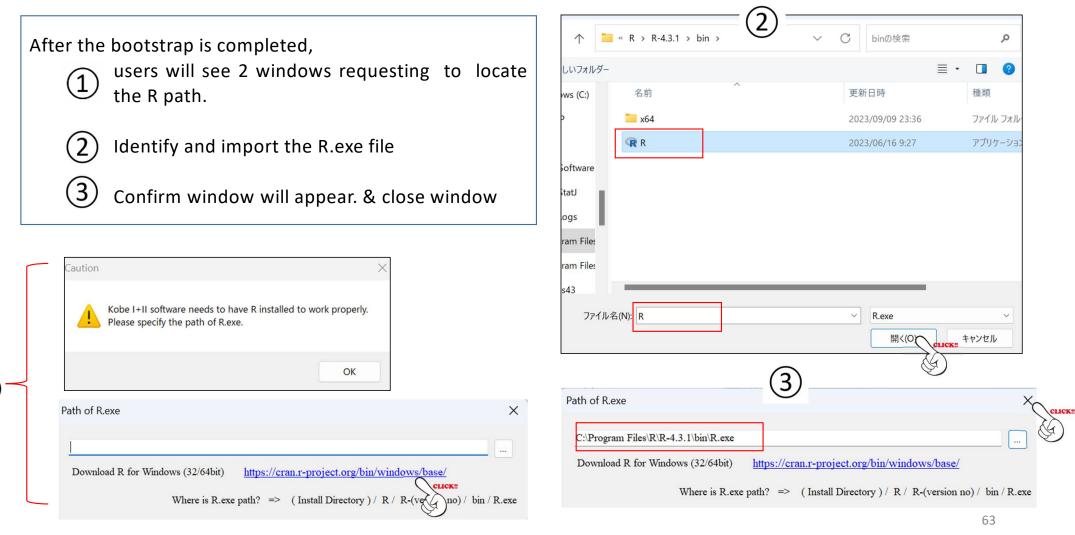
4. Running software: 4.4 Kobe I (Kobe plot)

If users see the following Note, please change K values to make Kobe plot.

Note: K for initial value is too high or too low. Expand Min K and/or Max K values in the batch job window and try again.

<mark>4. Running software</mark> 4.4 Kobe I (Kobe plot)

Snapshot during processing the bootstrap by the DOS prompt

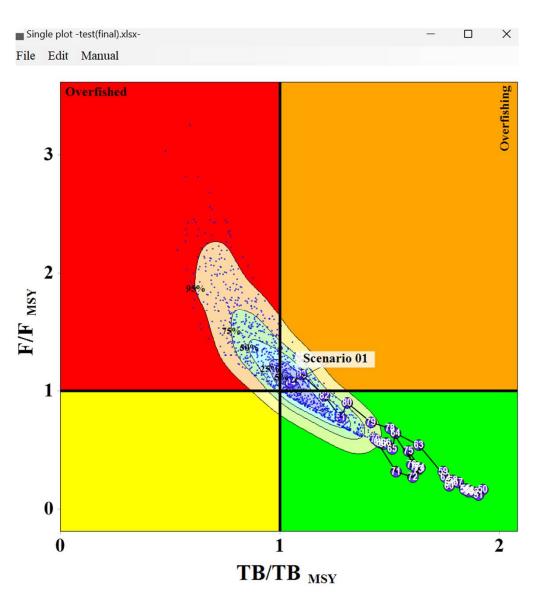

For this example, it will take 15-30 minutes (some case 2-5 hours) depending on data set & PC performance.

© C:¥ESL Software¥ASPIC_Mana × + ✓

B1/K: 1.000 K:1.404E+05 MSY:7.920E+03 SSE:3.15192736E-01 Tr: 425 Cn: 6 Tr: 426 Cn: 6 B1/K: 1.000 K:8.835E+04 MSY:9.929E+03 SSE:1.27911475E+00 NOTE: K estimate too small. Pending trial will be replaced. Tr: 427 Cn: 6 B1/K: 1.000 K:6.942E+04 MSY:1.383E+04 SSE:8.32698968E-01 NOTE: K estimate too small. Pending trial will be replaced. Tr: 428 Cn: 6 B1/K: 1.000 K:5.929E+04 MSY:1.310E+04 SSE:4.09525229E-01 Tr: 429 Cn: 6 B1/K: 1.000 K:4.199E+04 MSY:1.295E+04 SSE:6.99638790E-01 NOTE: K estimate too small. Pending trial will be replaced. B1/K: 1.000 K:7.274E+04 MSY:9.228E+03 Tr: 430 Cn: 6 SSE:8.98062412E-01 NOTE: K estimate too small. Pending trial will be replaced. Tr: 431 Cn: 6 B1/K: 1.000 K:4.660E+04 MSY:1.247E+04 SSE:9.72638974E-01 NOTE: MSY estimate too large. Pending trial will be replaced. Tr: 432 Cn: 6 B1/K: 1.000 K:8.370E+04 MSY:1.139E+04 SSE:6.20688221E-01 Tr: 433 Cn: 6 B1/K: 1.000 K:7.328E+04 MSY:1.128E+04 SSE:6.11899171E-01 Tr: 434 Cn: 6 B1/K: 1.000 K:4.544E+04 MSY:1.081E+04 SSE: 5.03696928E-01 1.000 Tr: 435 Cn: 6 B1/K: K:1.333E+05 MSY:1.127E+04 SSE:3.59222518E-01 Tr: 436 Cn: 6 B1/K: 1.000 K:6.200E+04 MSY:1.263E+04 SSE:6.96547959E-01 NOTE: K estimate too large. Pending trial will be replaced. Tr: 437 Cn: 6 B1/K: 1.000 K:5.776E+04 MSY:1.111E+04 SSE:5.32745343E-01 NOTE: K estimate too large. Pending trial will be replaced. Tr: 438 Cn: 6 B1/K: 1.000 K:6.691E+04 MSY:1.151E+04 SSE:4.16226400E-01 Tr: 439 Cn: 6 B1/K: 1.000 K:8.052E+04 MSY:1.016E+04 SSE:6.06107959E-01 NOTE: MSY estimate too large. Pending trial will be replaced. NOTE: K estimate too small. Pending trial will be replaced. NOTE: K estimate too small. Pending trial will be replaced. Tr: 440 Cn: 6 B1/K: 1.000 K:9.742E+04 MSY:1.056E+04 SSE:5.50004978E-01 Tr: 441 Cn: 6 B1/K: 1.000 K:1.523E+05 MSY:1.355E+04 SSE:4.26343001E-01 NOTE: MSY estimate too large. Pending trial will be replaced. NOTE: K estimate too small. Pending trial will be replaced. Tr: 442 Cn: 6 B1/K: 1.000 K:6.087E+04 MSY:1.199E+04 SSE:7.93617604E-01

4. Running software: 4.4 Kobe I (Kobe plot) Locate R path

IMPORTANT
This will be done only when users use this menu at the first time

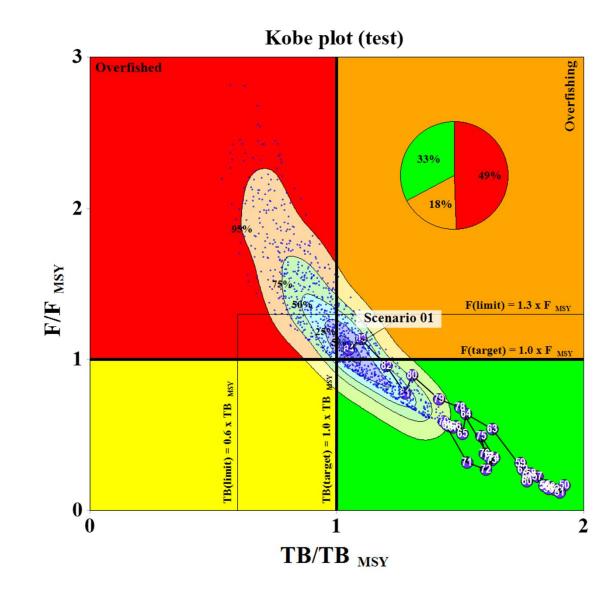


<mark>4. Running software</mark> 4.4 Kobe I (Kobe plot)

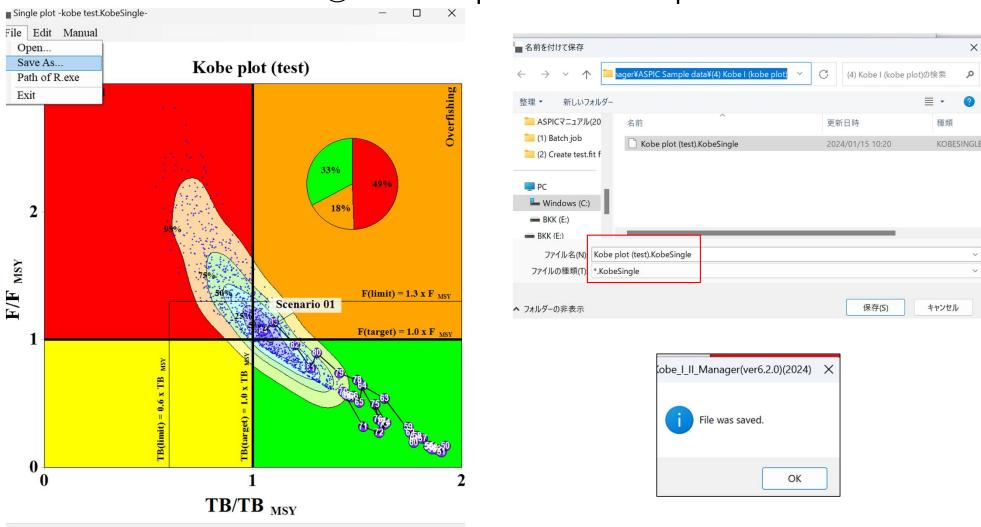
After the bootstrap is completed, the default Kobe plot appears.

Users can edit using 2 graph setting functions to make the final plot (see next 2 slides).

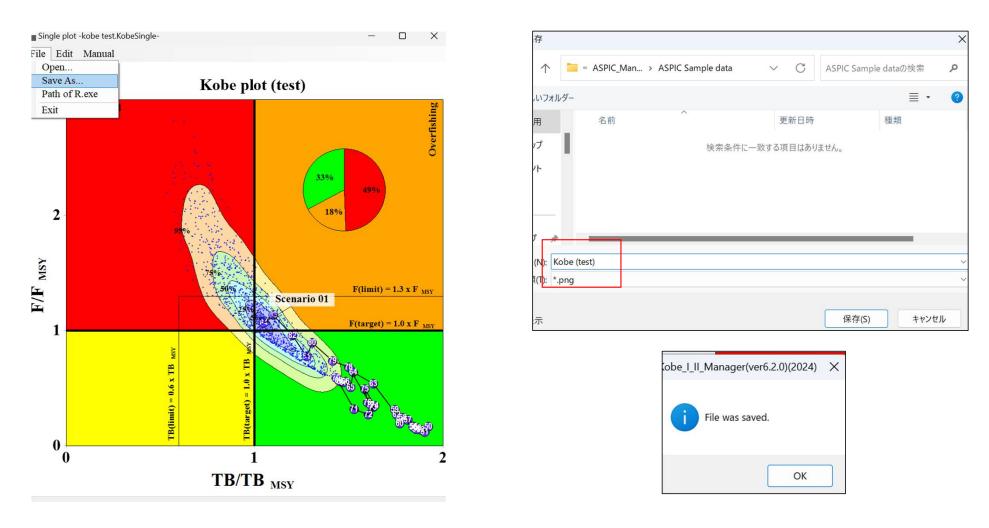
For details on graph setting functions, refer to the Kobe I+II manual.

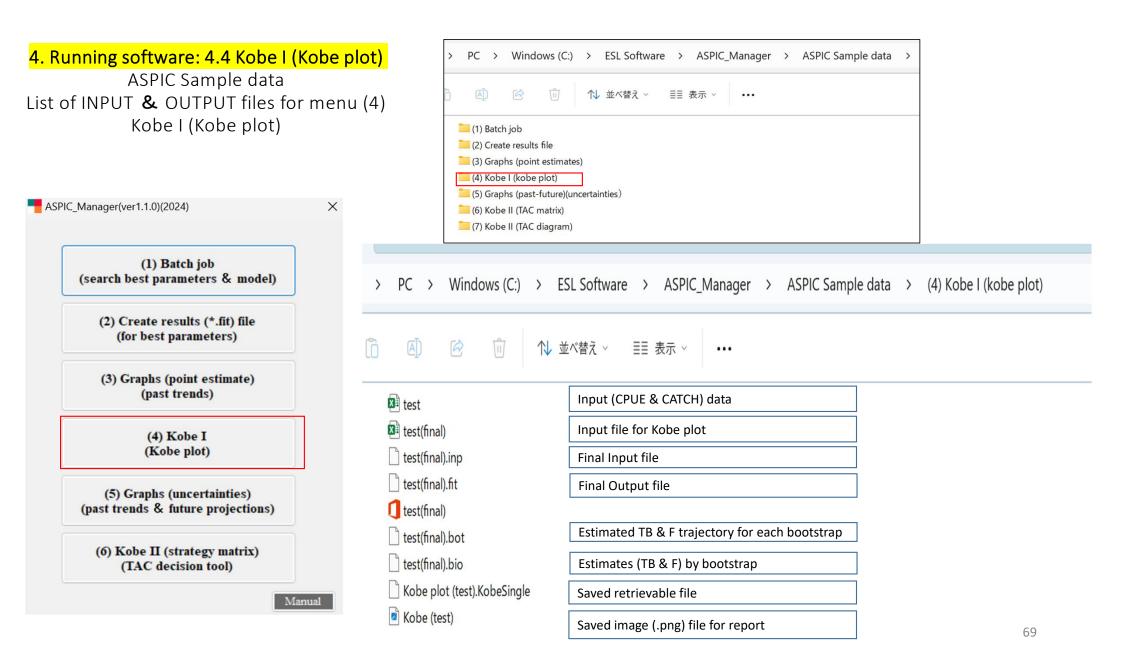

4. Running software: 4.4 Kobe I (Kobe plot) 2 graph setting functions (for details, refer to Kobe I+II manual)

Graph Settings
Points and lines Trajectory, confidence surface and phase
splay • 35° Years 954 91958 01962 01966 955 91959 01963 01967 956 01960 01964 01968 957 01961 01965 01969 • All Years Min. Max increment • 0 3 1 • 0 2 1 • (Widh: 1 © Style: Solid • (Widh: 1 © Style: Solid) • (Color: Widh: 1 © Style: Solid) • (Color
Y: Image: Index Color: Image: Index
 0 3 1 0 2 1 Color: Width: 1 \$ style: Solid • Font Size: 10 \$ B Target Reference Point Y: Mark Color: Width: 1 \$ style: Solid • Y(%): 1.0 \$ Y: F(target) = 1.0 x TBmsy Y(%): 1.0 \$ Y: F(target) = 1.0 x Fmsy Color: Width: 1 \$ style: Solid • Font Size: 10 \$ B Align confidence surface X: 0.08 \$ Y: 0.08 \$ Y: 0.08 \$


<mark>4. Running software</mark> 4.4 Kobe I (Kobe plot)

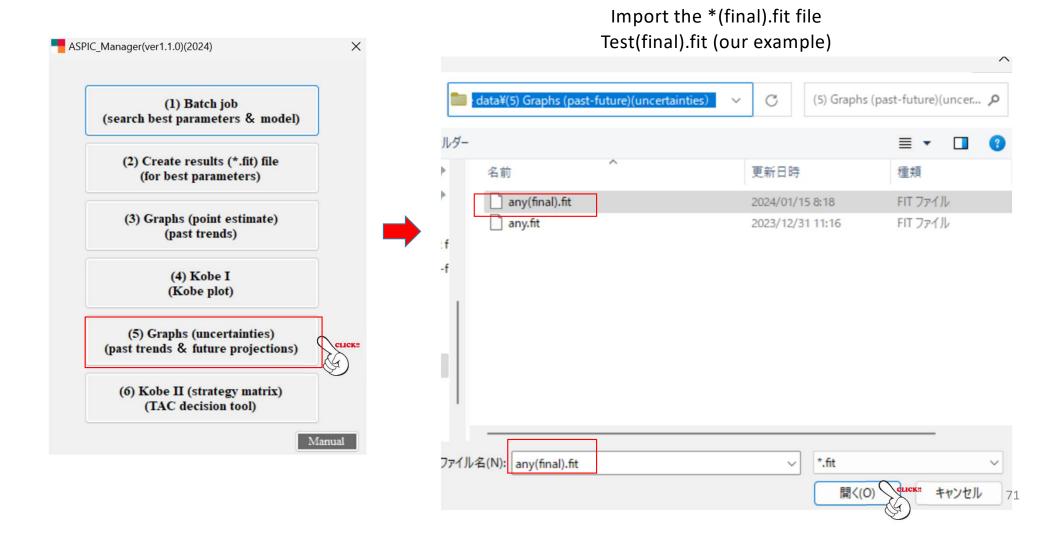
Final Kobe plot (edited)

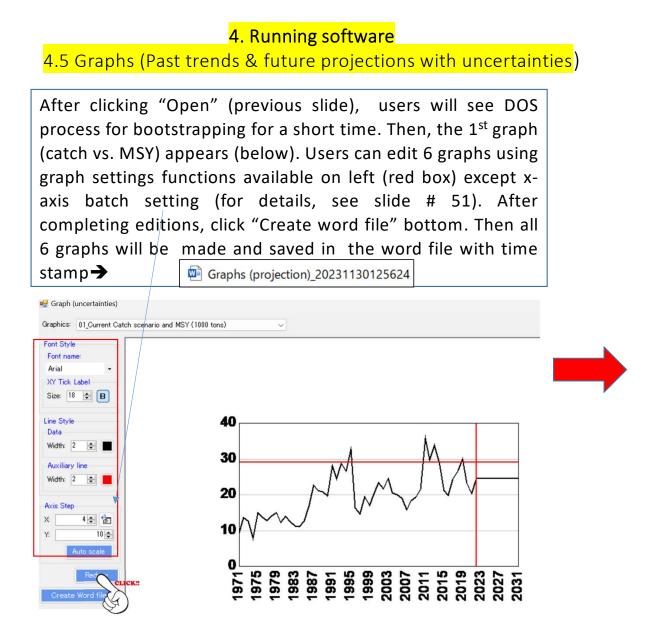

How to save ? See next 2 slides

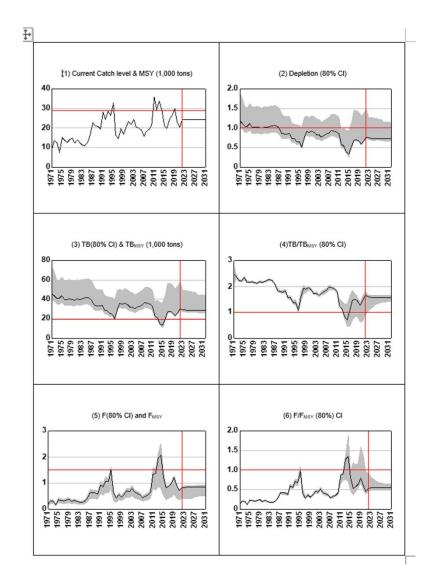

4. Running software: 4.4 Kobe I (Kobe plot) ① Save to reproduce the last plot

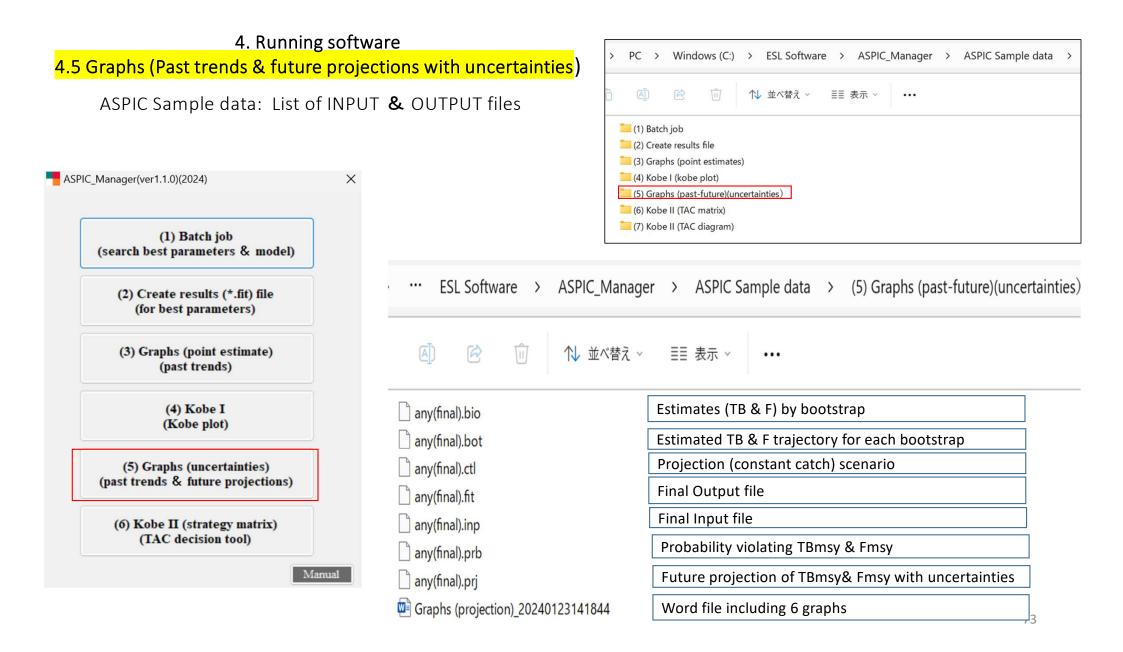
4. Running software: 4.4 Kobe I (Kobe plot)
 ② Save the image for your report
 → 3 types(bmp, png or emf) → *.png is recommended.

68

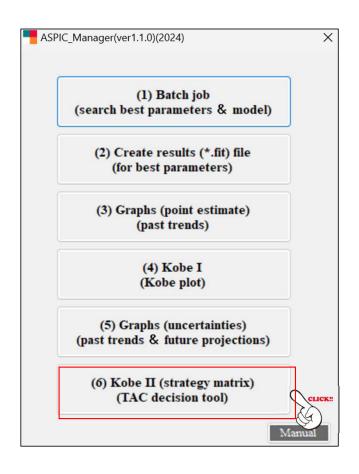



4. Running software 4.5 Graphs (Past trends & future projections with uncertainties) Trends of 6 key parameters with uncertainties estimated by bootstrap


(1) H	Batch job
search best pa	rameters & model
(2) Create r	results (*.fit) file
(for best	parameters)
(3) Graphs	(point estimate)
(pas	t trends)
	Kobe I
(Ko	be plot)
	(uncertainties)
past trends &	future projections)
(6) Kobe II	(strategy matrix)
(TAC de	ecision tool)


4. Running software 4.5 Graphs (Past trends & future projections with uncertainties)

Trends of 6 key parameters with uncertainties estimated by bootstrap (using other sample data)



4. Running software : 4.6 Kobe II (Strategy matrix)(TAC decision tool by risk assessment)

Probability violating TBmsy & Fmsy in 3 & 10 years if current catch level contuses based on 1,000 bootstrapping

ASPIC_Manage			- • ×
Select *.inp f	le		
Processing ti	ne: 00h00m Status:	Run	Close
Select [*.inp] file.			
\rightarrow \sim \uparrow	ble data¥(5) Graphs (past-future)(uncertain	nties) × C (5) Grap	hs (past-future)(uncert.
隆理 ▼ 新しいフォルダー			≣・□
 ビデオ 	名前	更新日時	種類
r=1.5 best 🖈	any(final).inp	2024/01/15 8:41	INP ファイル
 (1) Batch job (2) Create test.fit f 			
(5) Graphs (past-f			
PC			
Windows (C:)			
BKK (E:)			
オットローク			
	۲.(N): any(final).inp	× inp	

74

Import the test(final).inp (example)

After importing the conformation window will appear (below)

ASPIC_Manager(ver1.1.0)(2024)	-	
Select *.inp file		
C:¥ESL Software¥ASPIC_Manager¥ASPIC Sample data¥(5) Graphs (past-future)(uncertainties)¥any(final).inp		
Processing time: 00h00m Status:	Run	Close

It will take 10-30 minutes (sometimes a few hours) to complete depending on the data set and PC

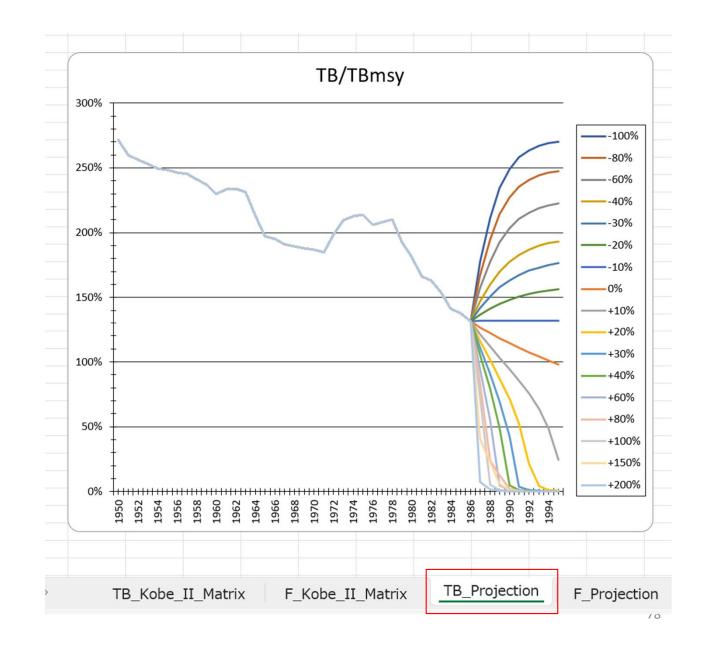
ASPIC_Manager(ver	1.1.0)(2024)				-		×
Select *.inp file							
C:¥ESL Software (past-future)(und			Sample data¥(5) (Graphs			
Processing time:	00h00m	Status:			Run	Clos	se

75

Then, one excel sheet (TB_F_KOBEII.xlsx) containing 4 sheets is created. (for the next 10 years)

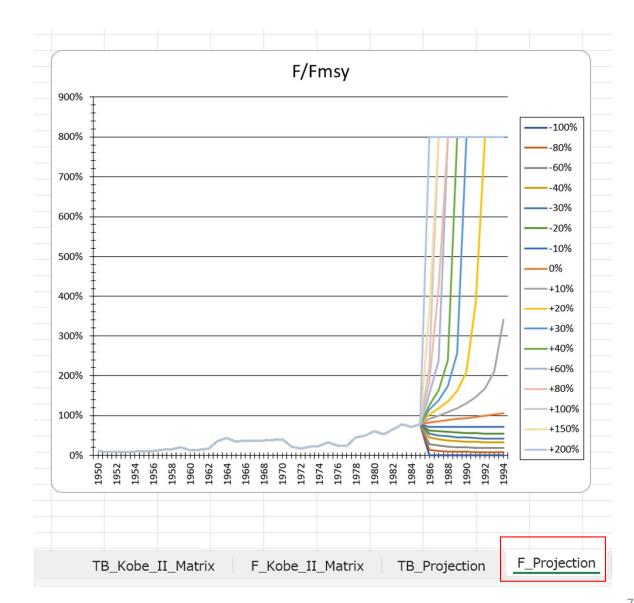
1st Sheet : TB_Kobe_II_Matrix

					Color	legend						
	Risk	levels	Low	<i>ı</i> risk	Med	dium v risk		dium n risk	High	ı risk		
	Prok	ably	0 -	25%	25 -	50%	50 -	75%	75 - 3	100%		
	%	Catch (tons)	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
	200%	40,533	36%	41%	85%	97%	100%	100%	100%	100%	100%	100%
	150%	33,778	36%	41%	79%	94%	99%	100%	100%	100%	100%	100%
	100%	27,022	36%	41%	71%	87%	95%	98%	99%	100%	100%	100%
% Increased from the	80%	24,320	36%	41%	66%	83%	91%	96%	98%	99%	100%	100%
% Increased from the current catch level	60%	21,618	36%	41%	61%	77%	87%	93%	96%	98%	99%	99%
	40%	18,915	36%	41%	57%	70%	80%	87%	91%	94%	95%	97%
	30%	17,564	36%	41%	54%	67%	75%	82%	87%	91%	93%	95%
	20%	16,213	36%	41%	52%	61%	70%	77%	81%	86%	89%	90%
	10%	14,862	36%	41%	49%	56%	63%	69%	75%	79%	82%	84%
* Current catch	0%	13,511	36%	41%	47%	51%	56%	60%	64%	68%	71%	74%
	-5.60%	**12,760	36%	41%	45%	47%	50%	54%	57%	59%	62%	64%
	-10%	12,160	36%	41%	43%	45%	47%	50%	52%	53%	56%	58%
	-20%	10,809	36%	41%	40%	39%	37%	37%	37%	37%	37%	38%
% decreased from the	-30%	9,458	36%	41%	35%	31%	29%	27%	24%	23%	22%	21%
current catch level	-40%	8,107	36%	41%	32%	26%	19%	16%	14%	13%	12%	11%
	-60%	5,404	36%	41%	26%	13%	8%	6%	6%	6%	6%	6%
	-80%	2,702	36%	41%	19%	6%	3%	3%	3%	3%	3%	3%
	-100%	0	36%	41%	12%	2%	1%	1%	1%	1%	1%	1%
Note) * Average catch fo	or 3 last asse	essments vear	s ** MSY	level								


Then, one excel sheet (TB_F_KOBEII.xlsx) containing 4 sheets is created. (for the next 10 years)

2nd Sheet : F_Kobe_II_Matrix

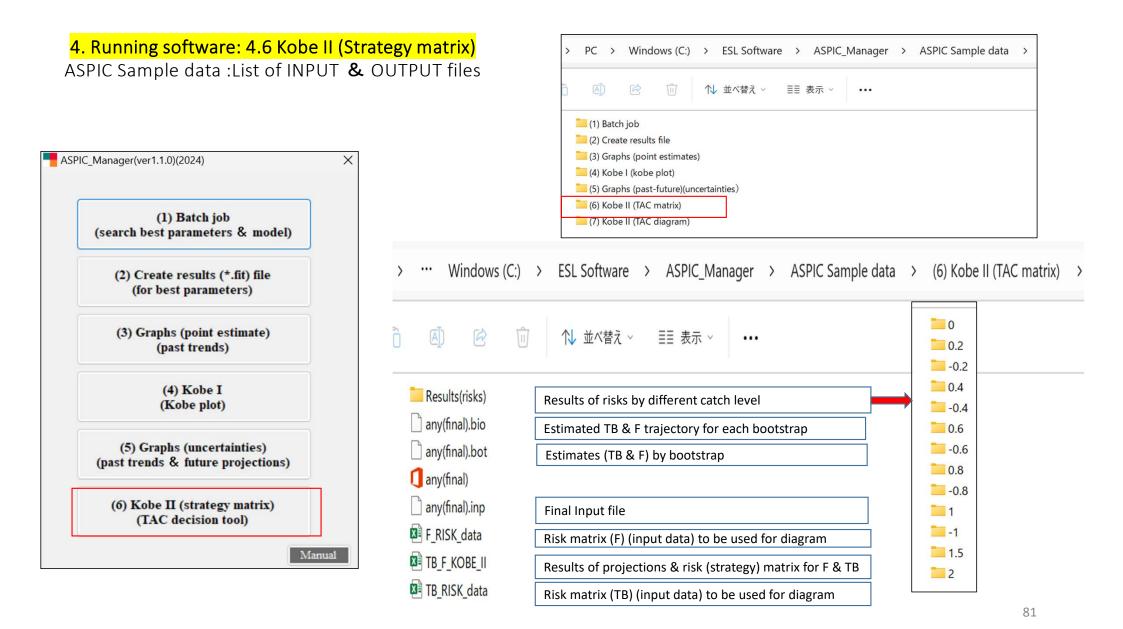
					Color	legend						
	Risk	levels	Low	risk	Med	dium risk		dium 1 risk	High	n risk		
	Prob	bably	0 -	25%	25 -	50%	50 -	75%	75 -	100%		
	%	Catch (tons)	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
	200%	40,533	42%	99%	100%	100%	100%	100%	100%	100%	100%	100%
-	150%	33,778	42%	96%	99%	100%	100%	100%	100%	100%	100%	100%
	100%	27,022	42%	89%	96%	99%	100%	100%	100%	100%	100%	100%
K Increased from the	80%	24,320	42%	85%	93%	97%	99%	100%	100%	100%	100%	100%
% Increased from the current catch level	60%	21,618	42%	79%	88%	93%	96%	98%	99%	100%	100%	100%
	40%	18,915	42%	71%	80%	87%	91%	94%	96%	97%	98%	99%
	30%	17,564	42%	65%	75%	82%	87%	91%	93%	95%	96%	97%
	20%	16,213	42%	60%	69%	76%	81%	86%	89%	91%	92%	93%
	10%	14,862	42%	54%	60%	68%	73%	77%	81%	84%	86%	88%
* Current catch	0%	13,511	42%	48%	51%	56%	61%	64%	68%	72%	75%	77%
	-5.6%	**12,760	42%	42%	45%	48%	51%	54%	57%	60%	62%	64%
	-10%	12,160	42%	39%	41%	43%	45%	48%	50%	52%	54%	55%
_	-20%	10,809	42%	30%	28%	28%	27%	26%	27%	27%	27%	27%
6 decreased from the	-30%	9,458	42%	21%	15%	11%	9%	8%	8%	8%	8%	9%
current catch level	-40%	8,107	42%	10%	4%	2%	1%	1%	1%	1%	1%	1%
_	-60%	5,404	42%	1%	0%	0%	0%	0%	0%	0%	0%	0%
_	-80%	2,702	42%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	-100%	0	42%	0%	0%	0%	0%	0%	0%	0%	0%	0%
ote) * Average catch fo	or 3 last asse	essments year	s ** MSY	level								


Then, one excel sheet (TB_F_KOBEII.xlsx) containing 4 sheets is created. (for the next 10 years)

> 3rd Sheet : TB_Projection

Then, one excel sheet (TB_F_KOBEII.xlsx) containing 4 sheets is created. (for the next 10 years)

> 4th sheet : F_Projection


Note:

Some users might have green triangles in the upper left corner of the cell There are a few methods to clear. Please refer to the Excel manual.

			Risk pro	obability (%	6) violating	g TB(MSY) I	evel by cat	ch level				
					Color	legend	5- 5-					
	Risk I	evels	Low	risk	1.1.2.0.0.0.0	lium risk		lium risk	High	n risk		
	Prob	ably	0 - 2	25%	25 -	50%	50 -	75%	75 -	100%		
	%	Catch (tons)	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
	200%	40,533	36%	41%	85%	97%	100%	100%	100%	100%	100%	100%
	150%	33,778	36%	41%	79%	94%	99%	100%	100%	100%	100%	100%
	100%	27,022	36%	41%	71%	87%	95%	98%	99%	100%	100%	100%
% Increased from the	80%	24,320	36%	41%	66%	83%	91%	96%	98%	99%	100%	100%
current catch level	60%	21,618	36%	41%	61%	77%	87%	93%	96%	98%	99%	99%
	40%	18,915	36%	41%	57%	70%	80%	87%	91%	94%	95%	97%
	30%	17,564	36%	41%	54%	67%	75%	82%	87%	91%	93%	95%
	20%	16,213	36%	41%	52%	61%	70%	77%	81%	86%	89%	90%
	10%	14,862	36%	41%	49%	56%	63%	69%	75%	79%	82%	84%
* Current catch	0%	13,511	36%	41%	47%	51%	56%	60%	64%	68%	71%	74%
	-5.6%	**12,760	36%	41%	45%	47%	50%	54%	57%	59%	62%	64%
	-10%	12,160	36%	41%	43%	45%	47%	50%	52%	53%	56%	58%
	-20%	10,809	36%	41%	40%	39%	37%	37%	37%	37%	37%	38%
% decreased from the	-30%	9,458	36%	41%	35%	31%	29%	27%	24%	23%	22%	21%
current catch level	-40%	8,107	36%	41%	32%	26%	19%	16%	14%	13%	12%	11%
	-60%	5,404	36%	41%	26%	13%	8%	6%	6%	6%	6%	6%
	-80%	2,702	36%	41%	19%	6%	3%	3%	3%	3%	3%	3%
R	-100%	0	36%	41%	12%	2%	1%	1%	1%	1%	1%	1%

(Note) * Average catch for 3 last assessments years ** MSY level

80%

Appendix A: History of development

ASPIC Batch job (Grid search) menu-driven software (single menu)

→ Equivalent to Menu (1) in ASPIC_Manager

Ver 1.1	February 13	2018
Ver 1.1 (REV)	February 18	2018
Ver 2.0	August 6	2018

ASPIC_Manager (all-in-one)

Ver 1.0.0	August	2023	6 menus (original)
Ver 1.0.7	September	2023	6 menus (Batch job improved)
Ver 1.1.0	April	2024	6 menus (Risk matrix improved)

Appendix B Results of the batch job : test(final).fit (next 4 slides)

Users will not use results as ASPIC_Manager software uses results in this file. Majority of results are self-explanatory. If users have difficulties to understand meanings of some of results, refer to the original ASPIC manual (Prager, 2004) or contact [MENU] Menu-driven stock assessment software developing team.

est						-	niday 00 Dee 2	022 at 0	Page	
SPTC - A S	urplus-Product	ion Model T	ncluding Cours	niates (Ven	E 10)	F	riday, 08 Dec 2	023 at 0	8:51	: 2
SPIC A S	ur prus-product.	TOU HOUET I	incruding cova	Tates (ver.	5.10)		-	IT progr	am m	od
uthor:	Michael H. Pra	Per NOAA C	enter for Coa	stal Fisheri	s and Habitat	Research	1	FOX mod		
	101 Pivers Isl					Research	v	LD condi		
	Mike.Prager@no		eautore, nore		0510 054			SE optim		
	and a generation							or operm		
eference:	Prager, M. H.	1994. A sui	te of extensi	ons to a none	quilibrium	AS	PIC User's Manu	al is av	ailat	b 1
	surplus-produc	tion model.	Fishery Bul	letin 92: 374	-389.		gratis f	rom the	autho	or
	METERS (FROM I	NDUT ETLE)					Input file:	test(fin) - (le	in
peration of	ASPIC: Fit F	ox exponent	ial-yield mod	el by direct	optimization.					
	ars analyzed:		3	5	Number of bo	otstrap trial	.s:			
lumber of da	ta series:			1	Bounds on MS	Y (min, max):	3.000E+0	3 1.	500E-	+0
bjective fu			Least square	S			2.300E+0		700E-	+0
	v. criterion (1.000E-0	8	Monte Carlo	search mode,	trials:	0	200	00
	v. criterion (3.000E-0		Random numbe				93323	38
elative con	v. criterion (effort):	1.000E-0	4			quired in fitti			1
laximum F al	lowed in fitti	ng:	8.00	0			ical integratio			2
ounds facto	r for generali	zed fit:	8.00	0	Bounds on ph	i (%):	3	7		3
COMPARISON O	F LOGISTIC AND	FOX MODELS								
Model Cod	e Exponent	Bmsy/K	B1/K	MSY	К	q1	Objective fn.			
L 0	2.00	0.500	1,000E+00	1.116E+04	7.048E+04	5.391E-03	6.12443E-01			
F 0		0.368			6.562E+04					
IOTE: Follow	ing report des	cribes Fox	model w/ adju	sted bounds:	MSY(1.40E+03,	8.93E+04), K	(1.47E+02, 3.38	E+07)		
DOCDAM CTAT	US TNEORMATTON	(NON-BOOTS	TRAPPED ANALY	SIS)				error c	ode	
RUGRAM STAT		·····								

		Weighted		Weighted	Current	Inv. var.	R-squared
Loss comp	ponent number and title	SSE	N	MSE	weight	weight	in CPU
Loss(-1)	SSE in yield	0.000E+00					
Loss(0)		0.000E+00	1	N/A	1.000E+00	N/A	
Loss(1)		6.046E-01				1.000E+00	0.30
	JECTIVE FUNCTION, MSE, RMSE:	6.04591901E-01	•••••	4.319E-02	2.078E-01		
	d contrast index (ideal = 1.0):	0.4938		$C^* = (Bmax -$			
	d nearness index (ideal = 1.0):	0.8617			nin(B-Bmsy) /K		
MODEL PAR	RAMETER ESTIMATES (NON-BOOTSTRAPPED)						
Parameter	· · · · · · · · · · · · · · · · · · ·	Estimate	Use	r/pgm guess	2nd guess	Estimated	User gues
B1/K	Starting relative biomass (in 1950)	1.000E+00		1.000E+00	7.978E-01	0	
MSY	Maximum sustainable yield	1.276E+04		1.160E+04	6.352E+03	1	
<	Maximum population size	6.562E+04		7.040E+04	3.811E+04	1	
hi	Shape of production curve (Bmsy/K)			0.3679		0	
	 Catchability Coefficients by Data Se CPUE Catch 						
	NT and DERIVED PARAMETER ESTIMATES (NC	6.107E-03 N-BOOTSTRAPPED)		5.400E-03	4.750E-01	1	
q(1) MANAGEMEN Parameter	NT and DERIVED PARAMETER ESTIMATES (NC				4.750E-01		
MANAGEMEN	NT and DERIVED PARAMETER ESTIMATES (NC	N-BOOTSTRAPPED)					eral formul
MANAGEMEN Parameter MSY	NT and DERIVED PARAMETER ESTIMATES (NO Maximum sustainable yield Stock biomass giving MSY	N-BOOTSTRAPPED) Estimate			tic formula	Gene	eral formul
MANAGEMEN Parameter MSY Bmsy	NT and DERIVED PARAMETER ESTIMATES (NC Maximum sustainable yield	N-BOOTSTRAPPED) Estimate 1.276E+04			tic formula	Gene	eral formul n**(1/(1-n)
MANAGEMEN Parameter MSY Bmsy Fmsy	NT and DERIVED PARAMETER ESTIMATES (NO Maximum sustainable yield Stock biomass giving MSY Fishing mortality rate at MSY	N-BOOTSTRAPPED) Estimate 1.276E+04 2.414E+04			tic formula K/2	Gene	eral formul n**(1/(1-n)
MANAGEMEN Parameter MSY Bmsy Fmsy	NT and DERIVED PARAMETER ESTIMATES (NO Maximum sustainable yield Stock biomass giving MSY	N-BOOTSTRAPPED) Estimate 1.276E+04 2.414E+04 5.287E-01			tic formula K/2	Gene K*r	eral formul n**(1/(1-n) MSY/Bms
MANAGEMEN Parameter MSY Bmsy Fmsy n g	NT and DERIVED PARAMETER ESTIMATES (NO Maximum sustainable yield Stock biomass giving MSY Fishing mortality rate at MSY Exponent in production function	N-BOOTSTRAPPED) Estimate 1.276E+04 2.414E+04 5.287E-01 1.0001			tic formula K/2	Gene K*r	eral formul n**(1/(1-n) MSY/Bms
MANAGEMEN Parameter MSY Bmsy Fmsy n g B./Bmsy	NT and DERIVED PARAMETER ESTIMATES (NC Maximum sustainable yield Stock biomass giving MSY Fishing mortality rate at MSY Exponent in production function Fletcher's gamma	N-BOOTSTRAPPED) Estimate 1.276E+04 2.414E+04 5.287E-01 1.0001 2.718E+04			tic formula K/2	Gene K*r	eral formul n**(1/(1-n) MSY/Bms
MANAGEMEN Parameter MSY Bmsy Fmsy n g B./Bmsy F./Fmsy	NT and DERIVED PARAMETER ESTIMATES (NC Maximum sustainable yield Stock biomass giving MSY Fishing mortality rate at MSY Exponent in production function Fletcher's gamma Ratio: B(1985)/Bmsy	NN-BOOTSTRAPPED) Estimate 1.276E+04 2.414E+04 5.287E-01 1.0001 2.718E+04 1.376E+00			tic formula K/2	Gene K*r	eral formul n**(1/(1-n) MSY/Bms n-1))]/[n-1
MANAGEMEN Parameter MSY Bmsy Fmsy n B./Bmsy F./Fmsy Fmsy/F.	NT and DERIVED PARAMETER ESTIMATES (NC Maximum sustainable yield Stock biomass giving MSY Fishing mortality rate at MSY Exponent in production function Fletcher's gamma Ratio: B(1985)/Bmsy Ratio: F(1984)/Fmsy	N-BOOTSTRAPPED) Estimate 1.276E+04 2.414E+04 5.287E-01 1.0001 2.718E+04 1.376E+00 7.194E-01 1.390E+00		Logis	tic formula K/2	Gene K*r [n**(n/(r	eral formul MSY/Bms n-1))]/[n-1
MANAGEMEN Parameter MSY Bmsy Fmsy n B./Bmsy F./Fmsy Fmsy/F.	NT and DERIVED PARAMETER ESTIMATES (NO Maximum sustainable yield Stock biomass giving MSY Fishing mortality rate at MSY Exponent in production function Fletcher's gamma Ratio: B(1985)/Bmsy Ratio: F(1984)/Fmsy Ratio: Fmsy/F(1984)	N-BOOTSTRAPPED) Estimate 1.276E+04 2.414E+04 5.287E-01 1.0001 2.718E+04 1.376E+00 7.194E-01 1.390E+00		Logis	Stic formula K/2 MSY/Bmsy 	Gene K*r [n**(n/(r	
MANAGEMEN Parameter MSY Bmsy Fmsy B./Bmsy F./Fmsy Fmsy/F. Y.(Fmsy)	NT and DERIVED PARAMETER ESTIMATES (NC Maximum sustainable yield Stock biomass giving MSY Fishing mortality rate at MSY Exponent in production function Fletcher's gamma Ratio: B(1985)/Bmsy Ratio: F(1984)/Fmsy Ratio: Fmsy/F(1984) Approx. yield available at Fmsy in 1 as proportion of MSY Equilibrium yield available in 1985	NN-BOOTSTRAPPED) Estimate 1.276E+04 2.414E+04 5.287E-01 1.0001 2.718E+04 1.376E+00 7.194E-01 1.390E+00 9.985 1.756E+04 1.376E+00		Logis	Stic formula K/2 MSY/Bmsy 	Gene K*r [n**(n/(r	eral formul MSY/Bms n-1))]/[n-1 MSY*B./Bms
MANAGEMEN Parameter	NT and DERIVED PARAMETER ESTIMATES (NC Maximum sustainable yield Stock biomass giving MSY Fishing mortality rate at MSY Exponent in production function Fletcher's gamma Ratio: B(1985)/Bmsy Ratio: F(1984)/Fmsy Ratio: Fmsy/F(1984) Approx. yield available at Fmsy in 1 as proportion of MSY	NN-BOOTSTRAPPED) Estimate 1.276E+04 2.414E+04 5.287E-01 1.0001 2.718E+04 1.376E+00 7.194E-01 1.390E+00 9.985 1.756E+04 1.376E+00		Logis	Stic formula K/2 MSY/Bmsy MSY*B./Bmsy 	Gene K*r [n**(n/(r	eral formul n**(1/(1-n) MSY/Bms n-1))]/[n-1
MANAGEMEN Parameter MSY Bmsy Fmsy B./Bmsy F./Fmsy Fmsy/F. Y.(Fmsy)	NT and DERIVED PARAMETER ESTIMATES (NC Maximum sustainable yield Stock biomass giving MSY Fishing mortality rate at MSY Exponent in production function Fletcher's gamma Ratio: B(1985)/Bmsy Ratio: F(1984)/Fmsy Ratio: Fmsy/F(1984) Approx. yield available at Fmsy in 1 as proportion of MSY Equilibrium yield available in 1985	N-BOOTSTRAPPED) Estimate 1.276E+04 2.414E+04 5.287E-01 1.0001 2.718E+04 1.376E+00 7.194E-01 1.390E+00 1.376E+00 1.196E+04 9.368E-01	series	Logis 4*MSY*(B/	Stic formula K/2 MSY/Bmsy MSY*B./Bmsy 	Gene K*r [n**(n/(r	eral formul MSY/Bms n-1))]/[n-1 MSY*B./Bms

cest										Tuge 2
ECTI			TRAJECTORY (N	ION-BOOTSTRAPP						
ESTI	MATED P	OFULATION	TRAJECTORT (N							
		Estimated	Estimated	Estimated	Observed	Model	Estimated	Ratio of	Ratio of	
	Year	total	starting	average	total	total	surplus	F mort	biomass	
Obs	or ID	F mort	biomass	biomass	yield	yield	production	to Fmsy	to Bmsy	
and served									100 C	
1	1950	0.057	6.562E+04	6.405E+04	3.646E+03	3.646E+03	7.852E+02	1.077E-01	2.718E+00	
2	1951	0.041	6.276E+04	6.229E+04	2.581E+03	2.581E+03	1.709E+03	7.838E-02	2.600E+00	
3	1952	0.049	6.189E+04	6.142E+04	2.993E+03	2.993E+03	2.138E+03	9.217E-02	2.564E+00	
4	1953	0.054	6.103E+04	6.062E+04	3.303E+03	3.303E+03	2.535E+03	1.031E-01	2.528E+00	
5	1954	0.050	6.027E+04	6.013E+04	3.034E+03	3.034E+03	2.778E+03	9.545E-02	2.496E+00	
6	1955	0.059	6.001E+04	5.972E+04	3.502E+03	3.502E+03	2.970E+03	1.109E-01	2.486E+00	
7	1956	0.057	5.948E+04	5.936E+04	3.358E+03	3.358E+03	3.144E+03	1.070E-01	2.464E+00	
8	1957	0.078	5.926E+04	5.866E+04	4.578E+03	4.578E+03	3.468E+03	1.476E-01	2.455E+00	
9	1958	0.085	5.815E+04	5.763E+04	4.904E+03	4.904E+03	3.946E+03	1.610E-01	2.409E+00	
10	1959	0.111	5.720E+04	5.628E+04	6.232E+03	6.232E+03	4.553E+03	2.095E-01	2.369E+00	
11	1960	0.068	5.552E+04	5.599E+04	3.828E+03	3.828E+03	4.705E+03	1.293E-01	2.300E+00	
12	1961	0.078	5.639E+04	5.645E+04	4.381E+03	4.381E+03	4.492E+03	1.468E-01	2.336E+00	
13	1962	0.095	5.651E+04	5.612E+04	5.342E+03	5.342E+03	4.634E+03	1.801E-01	2.341E+00	
14	1963	0.191	5.580E+04	5.337E+04	1.019E+04	1.019E+04	5.784E+03	3.612E-01	2.311E+00	
15	1964	0.228	5.139E+04	4.928E+04	1.126E+04	1.126E+04	7.424E+03	4.321E-01	2.129E+00	
16	1965	0.183	4.756E+04	4.730E+04	8.652E+03	8.653E+03	8.182E+03	3.460E-01	1.970E+00	
17	1966	0.201	4.709E+04	4.659E+04	9.349E+03	9.349E+03	8.431E+03	3.796E-01	1.951E+00	
18	1967	0.198	4.617E+04	4.593E+04	9.107E+03	9.108E+03	8.661E+03	3.751E-01	1.913E+00	
19	1968	0.201	4.572E+04	4.552E+04	9.172E+03	9.172E+03	8.799E+03	3.811E-01	1.894E+00	
20	1969	0.204	4.535E+04	4.519E+04	9.203E+03	9.203E+03	8.909E+03	3.852E-01	1.879E+00	
21	1970	0.212	4.506E+04	4.481E+04	9.495E+03	9.495E+03	9.035E+03	4.009E-01	1.866E+00	
22	1971	0.114	4.460E+04	4.636E+04	5.266E+03	5.266E+03	8.535E+03	2.149E-01	1.847E+00	
23	1972	0.097	4.787E+04	4.932E+04	4.766E+03	4.766E+03	7.463E+03	1.828E-01	1.983E+00	
24	1973	0.119	5.056E+04	5.097E+04	6.074E+03	6.074E+03	6.816E+03	2.254E-01	2.095E+00	
25	1974	0.124	5.131E+04	5.145E+04	6.362E+03	6.362E+03	6.621E+03	2.339E-01	2.125E+00	
26	1975	0.175	5.156E+04	5.054E+04	8.839E+03	8.839E+03	6.962E+03	3.308E-01	2.136E+00	
27	1976	0.134	4.969E+04	4.996E+04	6.696E+03	6.696E+03	7.205E+03	2.535E-01	2.058E+00	
28	1977	0.127	5.020E+04	5.051E+04	6.409E+03	6.409E+03	6.993E+03	2.400E-01	2.079E+00	
29	1978	0.244	5.078E+04	4.851E+04	1.184E+04	1.183E+04	7.711E+03	4.615E-01	2.103E+00	
30	1979	0.265	4.666E+04	4.501E+04	1.194E+04	1.194E+04	8.946E+03	5.016E-01	1.933E+00	
31	1980	0.325	4.366E+04	4.169E+04	1.356E+04	1.356E+04	9.970E+03	6.152E-01	1.809E+00	
32	1981	0.281	4.008E+04	3.973E+04	1.118E+04	1.118E+04	1.054E+04	5.324E-01	1.660E+00	
33	1982	0.346	3.943E+04	3.817E+04	1.322E+04	1.321E+04	1.092E+04	6.548E-01	1.633E+00	
34	1983	0.409	3.714E+04	3.548E+04	1.453E+04	1.453E+04	1.152E+04	7.744E-01	1.538E+00	
35	1984	0.380	3.413E+04	3.363E+04	1.279E+04	1.279E+04	1.188E+04	7.194E-01	1.414E+00	
36	1985		3.322E+04						1.376E+00	

test

Page 2

			1 (NON-BOOTS					CPUE	
Jata	type cc:	CPUE-catch s	eries					Series weight:	1.000
		Observed	Estimated	Estim	Observed	Model	Resid in		
Obs	Year	CPUE	CPUE	F	yield	yield	log scale		
1	1950	*	3.912E+02	0.0569	3.646E+03	3.646E+03	0.00000		
2	1951	*	3.804E+02	0.0414	2.581E+03	2.581E+03	0.00000		
3	1952	*	3.751E+02	0.0487	2.993E+03	2.993E+03	0.00000		
4	1953	*	3.702E+02	0.0545	3.303E+03	3.303E+03	0.00000		
5	1954	*	3.672E+02	0.0505	3.034E+03	3.034E+03	0.00000		
6	1955	*	3.647E+02	0.0586	3.502E+03	3.502E+03	0.00000		
7	1956	*	3.625E+02	0.0566	3.358E+03	3.358E+03	0.00000		
8	1957	*	3.582E+02	0.0780	4.578E+03	4.578E+03	0.00000		
9	1958	*	3.520E+02	0.0851	4.904E+03	4.904E+03	0.00000		
10	1959	*	3.437E+02	0.1107	6.232E+03	6.232E+03	0.00000		
11	1960	*	3.419E+02	0.0684	3.828E+03	3.828E+03	0.00000		
12	1961	*	3.448E+02	0.0776	4.381E+03	4.381E+03	0.00000		
13	1962	*	3.427E+02	0.0952	5.342E+03	5.342E+03	0.00000		
14	1963	*	3.259E+02	0.1909	1.019E+04	1.019E+04	0.00000		
15	1964	3.800E+02	3.010E+02	0.2284	1.126E+04	1.126E+04	-0.23319		
16	1965	2.400E+02	2.888E+02	0.1829	8.652E+03	8.652E+03	0.18525		
17	1966	2.290E+02	2.845E+02	0.2007	9.349E+03	9.349E+03	0.21701		
18	1967	2.780E+02	2.805E+02	0.1983	9.107E+03	9.107E+03	0.00879		
19	1968	2.200E+02	2.780E+02	0.2015	9.172E+03	9.172E+03	0.23395		
20	1969	1.970E+02	2.760E+02	0.2037	9.203E+03	9.203E+03	0.33709		
21	1970	2.190E+02	2.736E+02	0.2119	9.495E+03	9.495E+03	0.22269		
22	1971	*	2.831E+02	0.1136	5.266E+03	5.266E+03	0.00000		
23	1972	*	3.012E+02	0.0966	4.766E+03	4.766E+03	0.00000		
24	1973	*	3.112E+02	0.1192	6.074E+03	6.074E+03	0.00000		
25	1974	*	3.142E+02	0.1237	6.362E+03	6.362E+03	0.00000		
26	1975	3.500E+02	3.086E+02	0.1749	8.839E+03	8.839E+03	-0.12575		
27	1976	3.090E+02	3.051E+02	0.1340	6.696E+03	6.696E+03	-0.01257		
28	1977	3.370E+02	3.085E+02	0.1269	6.409E+03	6.409E+03	-0.08840		
29	1978	4.450E+02	2.962E+02	0.2440	1.184E+04	1.184E+04	-0.40692		
30	1979	3.160E+02	2.749E+02	0.2652	1.194E+04	1.194E+04	-0.13938		
31	1980	2.520E+02	2.546E+02	0.3252	1.356E+04	1.356E+04	0.01016		
32	1981	2.310E+02	2.426E+02	0.2814	1.118E+04	1.118E+04	0.04894		
33	1982	2.830E+02	2.331E+02	0.3462	1.322E+04	1.322E+04	-0.19383		
34	1983	2.220E+02	2.167E+02	0.4094	1.453E+04	1.453E+04	-0.02420		
35	1984	2.130E+02	2.054E+02	0.3803	1.279E+04	1.279E+04	-0.03638		

